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Preface  

This volume contains lectures presented at the Eleventh Chris Engelbrecht 
Summer School held at the University of Cape Town during the first half of 
February 1998. 

The school gave lecturers the opportunity to present their fields of research 
in great detail with four or five lectures devoted to a single topic. 

The topic of the lectures included in this volume is the study of dense 
hadronic matter in relativistic heavy ion collisions and in astrophysics. 

In relativistic heavy ion collisions one can study the properties of highly 
compressed nuclear matter, test models describing the creation of hadrons, 
describe the evolution of hot hadronic matter and look for signals for the 
phase transition from nuclear to quark matter. 

The lectures included in this volume provide excellent introductions to the 
fields of chiral symmetry at finite temperature, the use of light cone variables 
and the use of statistical methods applied to relativistic heavy ion collisions. 
The lectures also give a very thorough review of the experimental results at 
the GSI/SIS accelerator and a detailed presentation of the methods used in 
astrophysics for the theoretical study of dense stars. 

We would like to take this opportunity to thank all the speakers for their 
efforts and for making the school a most enjoyable experience. 

We gratefully acknowledge the financial support of the Foundation for Re- 
search Development (FRD, Pretoria) and the University Research Committee 
of the University of Cape Town. 

Cape Town, October 1998 Jean Cleymans 
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P i o n  a n d  K a o n  P r o d u c t i o n  as a P r o b e  
for  H o t  a n d  D e n s e  N u c l e a r  M a t t e r  

Helmut Oeschler 1 

Institut fiir Kernphysik, Technische Universit~it Darmstadt, 
D - 64289 Darmstadt, Germany 
for the KaoS Collaboration* 

Abs t rac t .  The study of particle production in heavy ion reactions represents a 
valuable tool to extract information on the properties of hot and dense nuclear 
matter. Pions, kaons and protons were detected in mass-symmetric heavy ion reac- 
tions from C+C to Au+Au at incident energies between 0.6 and 2.0 A.GeV with 
the magnetic spectrometer KaoS installed at SIS, GIS. The study of K + mesons is 
considered to represent an ideal tool to extract information on the nuclear equation 
of state (EOS). First results indicate a soft EOS. The yield of K -  in Ni+Ni colli- 
sions is higher than expected from N N  collisions. A possible interpretation of this 
observation is an in-medium mass modification. The center-of-mass pion spectra 
deviate from a Boltzmann distribution. The results indicate that high-energy pions 
are emitted at an early stage of the collision while low-energy pions can be emitted 
also rather late. This is evidenced using (i) the centrality dependence of the pion 
yield, (ii) a comparison of oppositely charged pion spectra and (iii) the shielding 
by spectator matter in peripheral collisions. 

1 I n t r o d u c t i o n  

1.1 H e a v y  I o n  Physics 

Interactions between heavy ions at various incident energies exhibit specific 
characteristics. Their study represents different research goals: 

• A r o u n d  100 A . M e V  incident energy the interpenetration is rather 
small leading to an increase in density to less than 1.2 "P0 (with p0 the 
normal nuclear density). The reaction mechanism is strongly influenced 
by the nuclear mean field. This is seen by attractive deflections and the 
transition to repulsive deflections which is called at higher incident ener- 
gies "directed flow". Already a significant amount  of the incident beam 
energy can be converted into excitation of the nuclei leading to new and 
interesting phenomena like e.g. multifragmentation. 

• A r o u n d  1 A . G e V  incident energy in central collisions the nuclei are 
expected to be stopped leading to densities of (2 - 3) "P0. Excitation 
energies of about ~ 100 - 200 MeV/nucleon are reached and part  of 
this energy is converted into collective motion, i.e. as radial expansion of 
the compressed system. The phenomenon of "collective flow" is observed 
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by studying the kinetic energies of the outgoing fragments which are 
much higher than expected from Coulomb repulsion alone. The excitation 
energies are sufficient to create new particles. It can be easily seen that  
the number and species of produced particles represent a probe to test 
the energy content in the collision zone. This subject is the main theme 
of this work. 
A r o u n d  10 A-GeV incident energy still higher densities can be reached 
(~8 "P0). The observed "flow" phenomena are similar to those at some- 
what lower energies, yet many more particles are produced. The energy 
content (or energy density) is such that  a condition might be reached 
which is close to the expected transition of normal matter to the "quark- 
gluon-plasma". 
A r o u n d  100 A . G e V  incident energy it is under debatte whether the col- 
liding nuclei are stopped. This question refers to the question whether in 
the collision zone mainly mesons are found (non-stopping) or also baryons 
(stopping). In any case the energy content in this zone is very high and 
one expects that conditions are reached in which a phase transition to 
the "quark-gluon-plasma" might occur. However, a definite experimental 
prove is still missing. The latter two aspects are covered by the talk of P. 
Braun-Munzinger. 

1.2 Pa r t i c l e  P r o d u c t i o n  A r o u n d  1 A . G e V  

In central collisions of heavy ions at relativistic energies the colliding nuclei 
are expected to be stopped leading to dense and highly excited nuclear mat- 
ter in their collision zone. The investigation of particle production is a well 
established method to explore the properties of this hot and excited dense 
nuclear matter [1-3]. 

Around 1 A-GeV only the production of pions is possible in single N N  
collisions while for other mesons the energy needed for the production has to 
be accumulated from more than one elementary N N  collision. Figure 1 shows 
as arrows on the abscissa the thresholds in the center-of-mass frame for the 
production of various mesons and the excitation of baryonic resonances. The 
solid line gives the conversion into the laboratory system (ordinate) neglecting 
Fermi motion. The dashed lines represent the inclusion of Fermi motion in 
the two extremes, one corresponds to the Fermi motion towards the center of 
mass reducing the threshold and one pointing away from the center of mass 
increasing the threshold. 

Pions  are the most abundantly produced particles. They can easily be 
produced in individual nucleon-nucleon collisions. Pions interact strongly 
with nuclear matter by forming baryonic resonances e.g. via ~r ÷ N -+ z~. 
These resonances decay again mostly by pion emission. Therefore, pions are 
expected to leave the collision zone in a late stage of the collision when the 
system has expanded and cooled down [4]. 
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The K + p r o d u c t i o n  well below threshold was measured to occur pref- 
erentially in central collisions [5]. This suggests that  they are produced in 
multi-step collisions where in a first step via N N  -~ NZI baryonic resonances 
are excited. In a second step via N A  ~ N A K  + (or via NTr collisions) kaons 
can be produced. Due to these multi-step mechanisms the K + yield is sensi- 
tive to the available energy and thus to the nuclear equation of state (EOS). 
The systematic study of the dependence of the measured cross sections on 
centrality and beam energy is a promising toot to extract information on the 
EOS. 

K -  p r o d u c t i o n  is compared to K + production at equivalent beam en- 
ergies (at incident energies with equal values of V ~ -  ~ which com- 
pensates the different production threshold in the N N  system). It turns out 
tha t  the measured ratio K - / K  + is much higher for Ni+Ni collisions than  for 
N N  collisions [6]. A possible interpretation for this enhanced yield is a mass 
reduction of K -  in the nuclear medium. 

Of special interest is the origin of h i g h - e n e r g y  pions,  i.e. pions with 
a total  energy above the available energy in free nucleon-nucleon collisions. 
They can be called "subthreshold" particles. Their yields are compared to K + 
production, as the total energy needed for the production is similar. Results 
are presented indicating that  high-energy pions are emitted at  an early stage 
of the collision. This is evidenced by studying (i) the centrality dependence 
of the yield [7,8], (ii) a comparison of w+ and 7r- spectra [9,10] and (iii) the 
shielding by spectator matter  in peripheral collisions [9,11]. 
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2 T h e  E x p e r i m e n t  

The experiments are performed with the Kaon Spectrometer (KaoS) in- 
stalled at the heavy ion synchrotron SIS at GSI, Darmstadt. 

This spectrometer [12] (Fig. 2) was designed to identify kaons over a 
wide range of momenta and angles in the presence of a high background of 
protons and pions. It consists of a quadrupole and a dipole magnet. KaoS 
combines a compact geometry to minimize the decay in flight, a large solid 
angle (/2 = 15 - 35 msr) and a broad momentum range (.P,nax/P,~in ,~, 2 
up to 1.7 GeV/c). The intrinsic momentum resolution without tracking is 
5p/p --~3%. A time start detector (16 scintillator paddles) is located in be- 
tween the quadrupole and dipole magnet. The stop detector consists of 50 
plastic scintillator paddles along the focal plane of the spectrometer. This 
arrangement allows for a very fast time-of-flight trigger which is indispens- 
able for the efficient detection of rare particles. Three multi-wire proportional 
chambers - one located between the quadrupole and dipole magnet, one at 
the exit of the dipole and one close to the focal plane - are used for offiine 
tracking. The pions, kaons, protons and heavier particles are identified by 
the time-of-flight and momentum information. A tracking analysis is used to 
suppress background. 

Plexiglas & Water' 
Cmenkov 

ToF Sta~ MWPC1 ~'//'~ 

I \ " ° ° '  

Fig. 2: Layout of the double-focusing Kaon Spectrometer at SIS/GSI together with 
the detector setup. 

In the analysis mesons from central and peripheral collisions are sepa- 
rated by means of the hit multiplicity of charged particles in the Large Angle 
Hodoscope (LAH). This hodoscope consists of a 84-fold segmented detector 
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close to the target at angles of 12-48 degrees. In this angular range par- 
ticipating protons are the most abundant particles. The impact-parameter 
selection has been controlled[13] by the correlation of this multiplicity with 
the summed nuclear charge of projectile fragments observed in the Small An- 
gle Hodoscope (SAH). This 380-fold segmented detector covers polar angles 
between 0.5 and 11 degrees. It is located 7 m downstream of the target. 

3 K + P r o d u c t i o n  

Strangeness is produced by the creation of a Ss pair. The positively charged 
kaon consists of ~ and u quarks. The u-quark originates from a nucleon and 
the s-quark is build in the nucleon converting it into a lambda. The cor- 
responding energy needed in the center-of-mass frame is 671 MeV plus the 
kinetic energy of the K + (see Fig. 1). Hence, the beam energy of 1 A.GeV is 
not sufficient to produce K + in N N  collisions (neglecting the Fermi motion) 
and the production is called "subthreshold". This fact causes a great sensi- 
tivity of the K + yield to collective effects, i.e. on the energetic condition and 
it allows to extract information on the properties of the nuclear equation of 
state (EOS)[3,14-17]. 

A key advantage of studying emitted K + is that due to their property 
"antistrangeness" they hardly interact with nuclear matter. This is illustrated 
in Fig. 3 by the comparison of K + and 7r + interaction with p. The cross 
section for K+p are much smaller than for 7r+p. Therefore, K + constitute a 
direct probe of the hot collision zone. 
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Fig.  3. Elementary cross sec- 
tions for K+p and ~r+p inter- 
actions (from [18]) evidenc- 
ing the contrast between the 
two species. Note the loga- 
rithmic scale on the ordinate. 

The sensitivity on the EOS reduces with increasing incident energy, since 
close or above threhold K + can be produced via N N  collisions. The sensi- 
tivity is less for light systems than for heavier systems. This is due to the 
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pared with BUU cal- 
culations (see text). 

different densities reached in the collisions. Higher densities favour multi- 
ple collisions and the collective production of K +. Consequently, the "best" 
choice to extract  information on the EOS is to s tudy the K + spectra  of a 
heavy system at  energies around or even bet ter  below 1 A.GeV. These spec- 
t ra  can then be compared with model calculations using different values for 
the stiffness of the EOS. This is done in Fig. 4 for Au+Au collisions at  1 
A.GeV using the BUU calculations of [20]. This figure indicates a soft EOS 
(~ = 220 MeV). I would like to stress, however, tha t  this conclusion is ra ther  
premature.  Present models contain several uncertainties e.g. elementary cross 
sections. Therefore, models have to prove that  they describe "insensitive" K + 
production properly, like the K + production in light collision systems C+C.  
Furthermore,  they have to describe the measured pion spectra, too. 

Another quantity, which according to model calculations exhibits a sensi- 
t ivity on the EOS is the variation of the K + multiplicity with Ap~rt as shown 
in Fig. 5 for the system Au+Au at 1 A.GeV. The figure shows an increase 
of MK+/Aj,,~,-t as a function of Ap~t.  An emission proport ional  to  the num- 
ber of nucleons in the collisions zone would yield a constant value. Hence, in 
central collisions more K + per Ap,,.t are produced than in peripheral reac- 
tions. This rise can be parameterized with MK+ ~ Ag,~.  A soft EOS yields 
according to [21] higher values of a,  in agreement with the measured value 
of a ---- 1.8 4- 0.2, than a stiff EOS. 

This result is ra ther  similar to the one obtained from studying the inclu- 
sive K + multiplicity per A for A+A collisions as shown in the upper par t  
of Fig. 6. This figure evidences the contrast to pion product ion given in the  
lower part .  M,r/A decreases with A+A (see also [8]). Pion emission propor-  
tional to the number of nucleons would yield a constant value. The decrease 
might be due to absorption. 
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4 K -  P r o d u c t i o n  

The information which can be extracted from studying K -  product ion is 
very different to tha t  of K +. The threshold for K -  is higher (987.4 MeV) 
than for K + since a pair of ( K - ,  K +) has to be produced. Furthermore,  
the interaction of K -  with nuclear mat ter  is rather  strong as K -  can be 
"absorbed" by a nucleon forming a A. 
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Fig. 7: Cross section for K + and K -  production in Ni+Ni (left) [6] and pp collisions 
(right) [22] at equivalent energies, i.e. same energy relative to the threshold. 

Here, we compare K -  and K + production using Ni+Ni collisions. To 
compensate for the different thresholds, the K -  spectrum obtained at 1.8 
A.GeV is compared to the K + spectrum at 1.0 A.GeV in Fig. 7, left. In bo th  
cases the incident energy is 230 MeV below the N N  threshold. Nearly iden- 
tical spectra are obtained. This result does not appear  astonishing. However, 
the elementary cross section for pp -~ K + and -+ K -  at the same incident 
energy with respect to the threshold (see Fig.7, right) exhibits a factor 10 
difference in favour for K + production (for N N  collisions the enhancement  
factor is 7 due to isospin). Furthermore,  as already mentioned, K -  are ex- 
pected to be absorbed strongly in nuclear matter.  This should fur ther  reduce 
the yield of K -  in heavy ion collisions. In this respect, the nearly equal yields 
of K -  and K + are astonishing. 
Two explanations are discussed at present: 
(i) Hadrons in dense mat ter  might change their properties [23,24]. For K -  a 
significant reduction of the mass is expected when the density of the nuclear 
environment increases, while for K + a slight increase of the mass with density 
is predicted. 
(ii) If a thermal  and chemical equilibrium is achieved, the individual cross 
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section do no longer matter. In a first attempt [25] the measured ratio of 
K + to K -  at the incident energy of 1.8 A.GeV could be described within 
a thermal concept. This approach does not necessarily contradict the mass 
modifications as discussed in [26]. 

5 Pion Spectra 

Pion spectra up to laboratory momenta of 1400 MeV/c have been measured 
in mass symmetric systems from A = 12 to A = 197 and at incident energies 
from 0.6 to 2.0 A.GeV. As a selection, Fig. 8 shows double differential cross 
sections of positively and negatively charged pions in the Boltzmann repre- 
sentation 1/(pE) d2a/(dEd~) for various collision systems and at different 
incident energies. The spectra are measured at laboratory angles correspond- 
ing to a center-of-mass angular range within 904-30 degrees. Note that  in 
this representation thermal distributions exhibit straight lines. All spectra 
in Fig. 8 exhibit a concave, non-thermal shape. Straight lines (Boltzmann 
distributions) fitted to the high-energy tail, i.e. to kinetic energies above the 
corresponding free NN kinematical limit, are shown. The variation of these 
inverse slope parameters with the mass of the collision system is rather weak. 
However, proton spectra measured close to midrapidity show a much stronger 
increase of the inverse slope parameters with system mass. The inverse slope 
parameters of the high-energy pions increase strongly with incident energy. 
For details see Ref. [8]. 

It is of interest to study the variation of the slopes of the high-energy part 
of the pion spectra with centrality, i.e. as a function of Apart- Fig. 9 shows 
that the inverse slope parameters increase with Apart. All collision systems 
follow a common line. Furthermore, the inverse slope parameters obtained 
for positively charged kaons agree with this systematics. These findings to- 
gether with the obtained slope parameters from participating protons fit into 
a picture of a thermal, radially expanding source. Since the influence of flow 
increases with the mass of the emitted particle, protons show higher "ap- 
parent temperatures". At incident energies around 1 A-GeV pions are either 
"free" or "bound'in baryonic resonances. At freeze out the pion spectra are 
then composed of a "thermal" component and another one governed by the 
decay kinematics of the excited baryonic resonances. Indeed, the measured 
shapes (Fig. 8) can be qualitatively understood by such a scenario. Recent 
quantitative examples of such a decomposition are found e.g. in Ref. [27-29]. 

The arguments presented so far are pointing towards the interpretation 
within a thermal concept. A recent attempt to understand the particle ratios 
and spectra is given in Ref. [26]. Next, arguments are given that the assump- 
tion of a unique freeze-out time for all particles and even for one particle 
species of different kinetic energy, here pions, is highly questionable. 
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6 T h e  T i m e  E v o l u t i o n  o f  P i o n  E m i s s i o n  

In this chapter three observations demonstrate that high-energy pions are 
emitted during an early stage of the collision. The first one is based on a 
comparison of the centrality dependence of high-energy pions with that of 
positive kaons [8]. The second argument is based on a comparison of spectra 
of positively and negatively charged pions. A third independent argument 
for an early emission of high-energy pions is based on a detailed study of the 
shapes of pion spectra under different geometrical conditions [11]. 

6.1 H i g h - E n e r g y  P ions  

Figure 10 (left top) shows the ratio (da~+/d~cM) / (dap/df2cM) (labeled 
7r +/p) as a function of the average number of participating nucleons (experi- 
mentally deduced see Ref. [8]) for the heavy mass systems at 0.8 and 1 A.GeV 

~-1 (solid beam energy. Parameterizing (da~+/dfdcM) / (dap/dfdcM) ~ Apart 
lines in Fig. 10), an exponent a of 1.04 4- 0.13 (1.05 4- 0.13) is obtained at 
1.0 (0.8) A-GeV incident energy. This result demonstrates that the number 
of pions at midrapidity, dominated by the low-energy part of the spectra, ex- 
hibits a linear increase with the number of participating nucleons as already 
reported in Refs. [7,8,30,31] using the assumption that the number of high- 
energy protons emitted close to midrapidity (d~p/d~cM) scales linearly with 
Apart. Absorption is expected to play a minor role in these trends as only 
the spatial distribution of the mass varies. That is the advantage of studying 
the Apart dependence of one mass system only and not comparing different 
mass systems. 
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A different t rend in a~r+/ap (Fig. 10, right top) is observed when tak- 
ing into account the high-energy part  of the pion spectra alone. This ra- 
t io increases with the size of the reaction zone resulting a = 1.63 ± 0.19 
(a  = 1.86-1-0.19) for 1.0 (0.8) A.GeV incident energy (lines in Fig. 10). 
Here, only those pions are taken into account which have a total  energy 
above 671 MeV in the center-of-mass frame. This value has been chosen 
to  compare directly with the results from positive kaon product ion and it 
represents the minimum energy needed for the production of positive kaons 
(mK + (mA - rnN)), see below. 
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Fig. 10. Upper part: 
The ratio ~r+/p 
for all (left) and 
high-energy (right) 
pions from Au-FAu 
(1 A.GeV) and 
Bi+Pb (0.8 A.GeV) 
as a function of the 
average number of 
participating nucle- 
ons. Lines represent 
a fit oc A ~-l .  Lower 
part: Exponent a for 
positive pions and 
kaons as a function 
of the "average ad- 
ditional production 
energy" (see text for 
definition) [8]. 

In the lower part  of Fig. 10 the dependence of pion production on the 
beam energy and on the kinetic energy of the pions is combined: We s tudy 
the dependence of the exponent a on the energy which is available to pro- 
duce a particle in a nucleon-nucleon collision, corrected for the kinematical 
limit in free nucleon-nucleon collisions (Ekln+Ethreshold-(SV/~-lV-2mN)). The  
resulting quanti ty which is called "additional energy needed for product ion",  
is defined to  be positive for subthreshold production. 

Figure 10 (bottom) evidences an exponent a ~, 1 for particles produced 
above threshold and a continuous increase of the exponent a with the energy 
which is needed to  produce a particle with a given kinetic energy. For positive 
kaons a non-linear dependence of the yield with the number of part icipat ing 
nucleons has been reported, too [5,19,32]. To include these results in Fig. 10 
the corresponding full kaon spectra were integrated and the average kinetic 
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energy was determined. To obtain the average energy needed for the pro- 
duction of these kaons, the minimum energy to produce a positive kaon of 
671 MeV was added. Within the error bars no significant difference between 
particle species is observed in Fig. 10. This result evidences the similarity in 
production characteristics of the positive kaons and the high-energy pions, 
characterized by the exponent a, and can be understood by the fact that  
the same total energy is needed for their production. As mentioned above, 
a key in this representation is that absorption which is present in heavy ion 
collisions, likely cancels and only the production properties are seen. The ob- 
served trend suggests that the more energy is needed to produce a particle 
the more secondary collisions during the course of the heavy ion reaction have 
to take place to accumulate the energy needed for their production. For pos- 
itive kaons such a suggestion has already been made from a theoretical point 
of view [15,21,33]. Secondary collisions happen more frequently in central 
collisions of heavy nuclei during the hot and dense stage of the reaction. 

Our observations indicate that both kaon.s as well as high-energy pions are 
produced and emitted at the same early stage of the reaction. The majority 
of pions are emitted in a later stage. 

6.2 Comparison of  Positively and Negatively Charged Pions  

In this section, we present a comparison of positively and negatively charged 
pions emitted in 197Au+197Au collisions at 1.0 A.GeV incident kinetic energy. 
The observed difference in the ~r- and ~+ spectra is attributed to the different 
isospins and to the oppositely acting Coulomb field. At the incident energy 
of 1 A.GeV the n production occurs essentially via the formation of the/133 
resonance. Hence, the influence of the isospin can be calculated. Furthermore, 
only the one-pion decay is relevant. For details see Ref. [9,10]. 

k i n  Figure 11 shows the 7r- and ~+ cross section ~a/(dEe.,n.dT2c.,n. ) as a 
function of the kinetic energy E~.~m ". in the center-of-mass frame for central 
Au+Au reactions measured at a laboratory angle of (44 4- 4) degrees which 
corresponds to midrapidity. These central collisions represent (14 4- 4) % of 
the total reaction cross section. At low kinetic energies of the pions, the 7r- 
yield exceeds the ~r + yield and approaches it at higher kinetic energies. 

The energy integrated ~r- / r + ratio R t°t = ( da( Tr- ) / dT2 ) / ( da( Tr + ) / d[2 ) is - - e z p  
determined by extrapolating the energy distribution to Ec.m. = 0 describing 
the spectra with the sum of two Maxwell-Boltzmann distributions (see also 
[7,8]). The experimental value of 1.944-0.05 agrees well with the ratios derived 
from an isospin decomposition using the parametrization given in Ref. [34] 
(1.90) and with the nearly identical values using the isospin formulas corre- 
sponding to a formation purely via the A33 resonance (1.95). This agreement 
indicates that the n-/~r+-ratio reflects the N/Z asymmetry of the colliding 
system and motivates the assumption that the observed energy dependence 
is caused by the oppositely acting Coulomb field. 
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Figure 12, left, shows the 7r-/Tr + ratio for Au+Au collisions as a function 
of the pion kinetic energy in the c.m.-system. The zr-/Tr + ratio decreases from 
2.8 at  low pion energies to nearly a constant value of 1.1 for pion energies 
above 0.4 GeV. 

We assume that  the zr-/gr + ratio is independent of the pion energy if 
Coulomb effects are disregarded. This assumption is supported by t ranspor t  
model calculations [35,36] which find a constant 7r-/Tr + ratio of ~ 1.9 if the 
Coulomb interaction is switched off. The Coulomb field affects the charged 
pions directly by the proton phase-space distribution during the collision at  
the instant of emission. Hence, it is intriguing to extract  the s t rength of 
the Coulomb force starting from a static approximation for the Coulomb 
field. According to Ref. [37], the Coulomb force distorts the pion spectra  by 
modifying both  the kinetic energies of the particles and the available phase 
space. The solid line in Fig. 12, left, demonstrates tha t  the 7r-/Tr + ratio 
can only above 0.6 MeV pion kinetic energy be described with a Coulomb 
potential  of 22 MeV. For lower pion energies a lower Coulomb potential  is 
required. The dashed line in Fig. 12 shows the w-/Tr + ratio for a Vco~,~ of 
10 MeV. It is clear tha t  a constant Coulomb potential fails to describe the 
measured results. A Coulomb potential varying with pion energy is needed 
as shown in Fig. 13, see also [10]. 

For comparison, Fig. 12, right, shows the 7r-/Tr + ratio for C+C at  2 A.GeV 
[29]. The integrated 7r-/Tr + ratio is one as expected for N = Z nuclei. The  
ra ther  weak influence of the Coulomb field is demonstrated by the three lines. 
This figure evidences the precision of the data  as zr- and zr + are measured 
in different magnetic field settings. 

The extracted variation of Vcou~ can be interpreted that  high-energy pions 
are emit ted early from a compact configuration while pions of lower energy 
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leave the system at a more dilute stage. Hence, it is worthwhile to extract 
the radii and densities of the pion emitting sources. For central collisions the 
mean number of participating charges Zpart has been measured to 110±8. In 
a simple assumption of an emission of pions from the surface of a charged 
sphere, the Coulomb potential (Vcout = Zahc / re f f )  yields an effective radius 
of reff ~ 7.2 fm for high-energy pions. This can be converted into an effective 
density of Per! = (1.1 +0.2~ -0.3J "P0. For pion around 0.2 GeV Vcout -- 10 MeV is 
extracted. The corresponding density is Per! = (0.1 ± 0.03) • P0. 

We have observed that the Coulomb field which acts on low-energy pions, 
is weaker than the field acting on high-energy pions. This corresponds to a 
more dilute charge distribution at freeze-out for low-energy pions. Similar 
conclusions were obtained from pion-correlation studies [38,39]. 

6 .3  S h i e l d i n g  b y  S p e c t a t o r  M a t t e r  - T h e  P i o n  C a m e r a  

Direct experimental evidence for the time evolution of pion emission is pre- 
sented based on the shadowing of spectator matter in certain space-time 
regions. For this purpose we have chosen peripheral collisions of Au+Au at 
1.0 A.GeV incident energy. The moving spectator matter acts like a shut- 
ter of a camera shielding the pion, i.e. modifying the pion emission pattern 
according to the spatial distribution of the spectator matter at the time of 
the pion freeze out. The motion of the spectator serves as a calibrated clock 
since the c.m.-velocity is well defined. A preferential emission perpendicu- 
lar to the reaction plane has already been observed for this collision system 
[43,44]. Recently, an enhanced in-plane emission of pions was observed [40]. 
This "antiflow" behaviour is found to be pronounced only in peripheral col- 
lisions. In this work we reveal that the effects of "flow" and "antiflow" are 
resulting from the interplay of the time evolution of pion emission with the 
shadowing of the surrounding matter. 

Figure 14 illustrates the emission in respect to the reaction plane. The 
orientation of the reaction plane is determined using the recipe given by 
Danielewicz [42]. 

In previous works [43,44] the observation of preferential emission of pions 
perpendicular to the reaction plane has been reported. Here, we subdivide 
the emission in plane, comparing the number of pions emitted to the same 
side as the projectile remnants (projectile side) with the one on the opposite 
side (target side). Assuming that the out-of-plane emission reflects the least 
disturbed pion spectra, the in-plane spectra are divided by the out-of-plane 
one for normalization purpose. As an example Fig. 15 shows these ratios 
obtained at a laboratory angle of 84 degrees (0.01< Y/Ybea,n <_ 0.10). The 
most interesting observation is the drastic drop for high-energy pions on 
the "projectile side", while on the "target side" the ratio is about one. For 
low-energy pions one observes a slight reduction only on the "target side". 
The observations for r -  and ~r + are nearly identical, demonstrating that  
the effect is not caused by the opposite Coulomb force. To illustrate the 
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Fig. 14. Illustration of the ge- 
ometrical situation of two col- 
liding nuclei showing the re- 
action plane and out-of-plane 
emission (from [41]). 
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Fig. 15. Ratio of the 
pion spectra for in- 
plane emission to the 
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reduction of high-energy pions on the "projectile side", Fig. 16 shows the 
geometrical  si tuation just  at  the beginning of the collision. The  projectile 
spec ta tor  is just  inbetween the fireball and the detector on the projectile 
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Fig. 16. Sketch of the geometrical sit- 
uation of the spectators at 6 fm/c after 
the instant when the nuclei touch for 
Au+Au collisions at 1 A.GeV. 

side, thus shielding pious emitted at this instant. However, at this "early" 
stage the target spectator is not shielding the emission to the "target side" as 
can be observed in Fig. 15. Hence, high-energy pious are emitted at this early 
stage (~ 6fm/c) of the collision. The emission time interval is estimated to be 

10 fm/c from the time of fly-by of the projectile residue. Low-energy pions 
seem to be emitted during the whole collision as no pronounced suppression 
is seen. The slight reduction on the target side indicates a preferred emission 
at later times. 

The results of the three methodes can be interpreted as follows: The 
excited nuclear system is expanding and pion emission occurs during the 
whole collision process. High-energy pions are emitted only during the early 
phase of the collision. This is evidenced by the shadowing of spectator matter 
and by the high Coulomb field acting on these pions. Lower pion energies do 
not exhibit a pronounced shadowing, the repective Coulomb field are rather 
low. This points to a rather long emission time interval at a late stage of 
the collision. Microscopic calculation also state that high-energy pious are 
emitted aerlier than pious of lower kinetic energy [45]. 

7 S u m m a r y  

The study of particle production in heavy ion collisions offers a rich field to 
explore nuclear matter at high densities and at high excitations. 

The extraction of information on the nulear equation of state is one of 
the main topics. It was demonstrated that the study of K + production rep- 
resents a favourite tool for this task. The present results indicate a soft (a 
220 MeV) compression modulus. A complete systematics, i.e. an excitation 
function for K + of a light and a heavy collision system are needed [46] to 
compare with model prediction before this long-outstanding question can be 
answered. 
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The yield of K -  production in Ni+Ni is similar to the K + cross section 
when compared at equivalent energies (same c.m.-energy below the repective 
thresholds). This is astonishing as the elementary cross section exhibits a 
factor 7 larger yield for K + than for K -  at the same energy above threshold. 
A reduction of the K -  mass in the nuclear medium is discussed as interpre- 
tation of these yields. 

Pion energy spectra deviate from a pure Boltzmann shape. They show 
a low energy enhancement which is interpreted as dominated by decaying 
baryonic resonances. A comparison of the inverse slope parameters of pions, 
K + and p seem to favour an interpretation with a chemical and thermal 
equilibrium. Also particle ratios seem to favour this concept [26]. In spite 
of this success, detailed studies of the high-energy part of the pion spectra 
exhibit that  they are emitted only at an early stage of the collision while 
low-energy pions seem to be emitted during the whole collision process. This 
was evidenced by three independent analysing techniques. 
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Abstract .  I give an introduction to the basic concepts of fluid dynamics as applied 
to the dynamical description of relativistic nuclear collisions. 

1 I n t r o d u c t i o n  a n d  C o n c l u s i o n s  

Modelling the dynamic evolution of nuclear collisions in terms of fluid dy- 
namics has a long-standing tradition in heavy-ion physics, for a review see 
[1-3]. One of the main reasons is that one essentially does not need more 
information to solve the equations of motion of ideal fluid dynamics than the 
equilibrium equation of state of matter under consideration. Once the equa- 
tion of state is known (and an initial condition is specifed), the equations of 
motion uniquely determine the dynamics of the collision. Knowledge about 
microscopic reaction processes is not required. This becomes especially im- 
portant when one wants to study the transition from hadron to quark and 
gluon degrees of freedom, as predicted by lattice simulations of quantum 
chromodynamics (QCD) [4]. The complicated deconfinement or hadroniza- 
tion processes need not be known in microscopic detail, all that is necessary 
is the thermodynamic equation of state as computed by e.g. lattice QCD. 
This fact has renewed interest in fluid dynamics to study the effects of the 
deconfinement and chiral symmetry restoration transition on the dynamics 
of relativistic nuclear collisions. Such collisions are presently under intense 
experimental investigation at CERN's SPS and Brookhaven National Labo- 
ra tory 's  AGS and (beginning Fail 1999) RHIC accelerators. 

In this set of lectures I give an overview over the basic concepts and no- 
tions of relativistic fluid dynamics as applied to the physics of heavy-ion col- 
lisions. The aim is not to present a detailed and complete review of this field, 
but  to provide a foundation to understand the literature on current research 
activities in this field. This has the consequence tha t  the list of references is 
far from complete, that  I will not make any a t tempt  to  compare to  actual  
experimental data, and that  some interesting, but  more applied topics (such 
as transverse collective flow) will not be discussed here. In Section 2, I discuss 
the basic concepts of relativistic fluid dynamics. First, I present a derivation of 
the fluid-dynamical equations of motion. A priori, there are more unknown 
functions than  there are equations, and one has to devise approximation 
schemes in order to close the set of equations of motion. The most simple is 
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the ideal fluid approximation, which simply discards some of the unknown 
functions. Another one is the assumption of small deviations from local ther- 
modynamical equilibrium, which leads to the equations of dissipative fluid 
dynamics. A brief discussion of multi-fluid models concludes this section. In 
Section 3 I discuss numerical aspects of solution schemes for ideal relativis- 
tic fluid dynamics. Section 4 is devoted to a discussion of one-dimensional 
solutions of ideal fluid dynamics. After presenting a classification of possible 
wave patterns in one spatial dimension, for both thermodynamicall normal as 
well as anomalous matter, I discuss the expansion of semi-infinite matter into 
vacuum. This naturally leads to the discussion of the Landau model for the 
one-dimensional expansion of a finite slab of matter. The Landau model is 
historically the first fluid-dynamical model for relativistic nuclear collisions. 
However, more realistic is, at least for ultrarelativistic collision energies, the 
so-called the Bjorken model which is subsequently presented. The main result 
of this section is the time delay in the expansion of the system due to the 
softening of the equation of state in a phase transition region. This may have 
potential experimental consequences for nuclear collisions at RHIC energies, 
where one wants to study the transition from hadron to quark and gluon 
degrees of freedom. Finally, Section 5 concludes this set of lectures with a 
discussion on how to decouple particles from the fluid evolution in the so- 
called "freeze-out" process and compute experimentally observable quantities 
like single inclusive particle spectra. 

Units are h = c = kB = 1. The metric tensor is g ~  ---- d i a g ( + , - , - , - ) .  
Upper greek indices are contravariant, lower greek indices covariant. The 
scalar product of two 4-vectors a ~ , b ~ is denoted by a u g ~  b ~ - a ~ b~ - a.b. 
The latter notation is also used for the scalar product of two 3-vectors a,  b, 
a . b .  

2 T h e  B a s i c s  

In this section, I first derive the conservation equations of relativistic fluid 
dynamics. If there are n conserved charges in the fluid, there are 4 + n con- 
servation equations: 1 for the conservation of energy, 3 for the conservation 
of 3-momentum, and n for the conservation of the respective charges. In the 
general case, however, there are 10 + 4 n independent variables: the 10 inde- 
pendent components of the energy-momentum tensor (which is a symmetric 
tensor of rank 2), and the 4 independent components of the 4-vectors of the n 
charge currents. Thus, the system of fluid-dynamical equations is not closed, 
and one requires an approximation in order to solve it. 

The simplest approximation is the ideal fluid assumption which reduces 
the number of unknown functions to 5 + n. The equation of state of the fluid 
then provides the final equation to close the system of conservation equations 
and to solve it uniquely. Another approximation is the assumption of small 
deviations from an ideal fluid and leads to the equations of dissipative fluid 
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dynamics. In this approximation one provides an additional set of 6 + 3 n 
equations to close the set of equations of motion. Finally, I also briefly discuss 
multi-fluid-dynamical models. 

2.1 The  Conservation Equation~ 

Fluid dynamics is equivalent to the conservation of energy, momentum, and 
net charge number. Consider a single fluid characterized locally in space-time 
by its energy-momentum tensor T~V(x) and by the n conserved net charge 
currents N~ (x), i = 1,..., n. (Conserved charges are for example the electric 
charge, baryon number, strangeness, charm, etc.) Consider now an arbitrary 
hypersurface 2: in 4-dimensional space-time. The tangent 4-vector on this 
surface is Eu(x). The normal vector on a surface element dE of E is denoted 
by dE W (x). By definition, dE. E = 0. The amount of net charge of type i and 
of energy and momentum flowing through the surface element dE is given 
by 

dNi -- d E .  Ni , i = 1 , . . . ,  n , (1) 

dP  u =- d E , , T  uv , / ~ = 0 , . . . , 3  . (2) 

Now consider an arbitrary space-time volume V4 with a closed surface E.  
If there are neither sources nor sinks of net charge and energy-momentum 
inside E,  one has 

f E d E . N i - 0  i = l , . . . ,  (3) n 

f z d 2 ~ T  ~ _= 0 = 0 , . . . , 3  (4) I 

Gauss theorem then leads immediately to the global conservation of net 
charge and energy-momentum: 

v4d4x OuN ~ - O, i = 1 , . . . ,  n (5) 

f v d 4 X  ¢9~T u~ = 0 = 0 , . . . ,  3 (6) /z 
I 

For arbitrary V4, however, one has to require tha t  the integrands in (5,6) 
vanish, which leads to local conservation of net charge and energy-momentum: 

O,N~ -- O , i =  l , . . . , n  , (7) 

O,T " ~ = 0 ,  v = 0 , . . . , 3  . (8) 

These are the equations of motion of relativistic fluid dynamics [5]. Note 
tha t  there are 4 + n equations, but 10 + 4n  independent unknown func- 
tions TU~(x),  N~(x) .  (T ~ is a symmetric tensor of rank 2 and therefore 
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has 10 independent components, the N f  are 4-vectors with 4 independent  
components.) Therefore, the system of fluid-dynamical equations is a priori 
not closed and cannot be solved in complete generality. One requires addi- 
t ional assumptions to close the set of equations. One possibility is to  reduce 
the number of unknown functions, another is to provide 6 + 3 n additional 
equations of motion which determine all unknown functions uniquely. Both  
possibilities will be discussed in the following subsections. 

2.2 Tensor Decompos i t i on  and Choice o f  Frame 

Before discussing approximations to close the system of conservation equa- 
tions, it is convenient to perform a tensor decomposition of N ~ ,  T ~ with 
respect to an arbitrary, time-like, normalized 4-vector u ~, u • u -- 1. The  
projector  onto the 3-space orthogonal to u u is denoted by 

A ~  = g ~ v _  u~u ~, A ~ u ~  = 0,  A ~ A ~  = A~ ~ . (9) 

Then  the tensor decomposition reads: 

Ni ~ = ni u ~ + vff , (10) 

T ~ = eu~u ~ _ p A ~  +q~u ~ + q~u ~ + 7r~ ~ , (11) 

where 
n~ --  N ~ .  u (12)  

is the net density of charge of type i in the frame where u"  = (1, D) (subse- 
quently denoted as the local rest frame, LRF), 

v~ -- A~Ni ~ (13) 

is the net flow of charge of type i in the LRF, 

e =_ u~T~Vu~ (14) 

is the energy density in the LRF, 

p ~ - 1T"~A,~  (15) 
3 

is the isotropic pressure in the LRF, 

q" =_ A~aT~zu ~ (16) 

is the flow of energy or heat flow in the LRF, and 
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is the stress tensor in the LRF. Note that the particular projection (17) is 
trace-free. (The trace of the projection A ~ T ~ A ~  is absorbed in the definition 
of p.) The tensor decomposition replaces the original 10 + 4 n unknown func- 
tions by an equal number of new unknown functions ni (n), v~ (3n), e (1), 
p (1), q~ (3), and r ~  (5). 

So far, u ~ is arbitrary. However, one can give it a physical meaning by 
choosing it either to be 

= 

or (which is an implicit definition) 

(18) ' 

u[ -- T~u~ (19) 

The first choice means that u~ is the physical 4-velocity of the f low of net 
charge i. The LRF is then the local rest frame o] the flow o[ net charge i, 
i.e., the frame where N f  = (N °, 0). In this frame, there is obviously no flow 
of charge i, v~ - O, and N ° - ni. This LRF is called Eckart frame. Note, 
however, that not all net charges need to flow with the same velocity, v~ 
might be ~ 0 for j ~ i. The number of unknown functions is still 10 + 4 n, 
since the 3 previously unknown functions v~ have been merely replaced by 
the 3 independent components of u~ (uB • uB = 1!), which now have to be 
determined dynamically from the conservation equation for Nf .  

The second choice means that u~ is the physical 4-velocity of the energy 
flow. The LRF is the local rest frame o[ the energy flow. It is obvious that  in 
this frame q~' - 0. This frame is called Landau frame. The number of unknown 
functions is still 10 + 4 n, since the 3 previously unknown functions q~' have 
been merely replaced by the 3 independent components of u~ (UL • UL = 1!), 
which now have to be determined dynamically from the conservation equation 
for T ~v. Other choices of rest frames are also possible, for a discussion, see 
[6]. 

2.3 Idea l  F lu id  Dynamics 

Consider an ideal gas in local thermodynamical equilibrium. The single-parti- 
cle phase space distribution for fermions or bosons then reads 

f o ( k , x ) -  g 1 (20) 
(27r) 3 exp (k .  u(x)  - # ( x ) ) / T ( x )  :l: 1 ' 

where u ~ (x) is the local average 4-velocity of the particles, #(x) and T ( x )  are 
local chemical potential and temperature, and g counts internal degrees of 
freedom (spin, isospin, color, etc.) of the particles. The chemical potential of 
the particles is defined as # -- ~-]~=1 qi#i, where #i are the chemical potentials 
which control the net number of charge of type i, and qi is the individual 
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charge of type i carried by a particle. The chemical potential for antiparticles 
is/2 ---- -/~ (in thermodynamical  equilibrium). Let  us define the single-particle 
phase space distribution for antiparticles by f0(/2) = f 0 ( - # ) .  

The kinetic definitions of the net current of charge of type i and of the 
energy-momentum tensor are [6] 

N~(x) ~ q, / ~--  k ~ [ fo(k,x)-  fo(k ,x)]  , (21) 

f , 
where E = ~ is the on-shell energy of the particles and m their  rest 
mass. Inserting (20) one computes 

N :  -- ni u"  , (23) 

T ~ = e u~u ~ - p A "~ , (24) 

where 
f d3k 

is the thermodynamic net number density of charge of type i of an ideal gas, 
and the Fermi-Dirac or Bose-Einstein distribution was denoted by n(E) - 
1/(exp[(E - D)/T] ± 1), ri(E) - 1/(exp[(E + D)/T] ± 1). Furthermore,  

f dSk = g E In(E) + (26) 

is the thermodynamic ideal gas energy density, and 

d3 k k 2 
P --- g (27r) 3 3 E [n(E) + riCE)] (27) 

is the thermodynamic ideal gas pressure. The form (23,24) implies tha t  for 
an ideal gas in local thermodynamical  equilibrium the functions v~' -- q~ -- 
7r ~ ---- 0, i.e., there is no flow of charge or heat with respect to the particle 
flow velocity u ~, and there are no stress forces. This implies fur thermore (and 
can be confirmed by an explicit calculation) tha t  for an ideal gas in local 
thermodynamical  equilibrium u~ - u~ = u ~, i.e., Eckart 's and Landau 's  
choice of frame coincide with the local rest frame of particle flow. 

This consideration of an ideal gas in local thermodynamical  equilibrium 
serves as a motivation for the so-called ideal fluid approximation. In this ap- 
proximation, one starts on the macroscopic level of fluid variables N f ,  T ~ 
and a priori takes them to be of the form (23) and (24). The corresponding 
fluid is referred to as an ideal fluid. Without  any further assumption, how- 
ever, the corresponding system of 4 + n equations of motion contains 5 + n 
unknown functions, e,p, u ~, and ni, i = 1,... ,  n. One therefore has to  specify 
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an equation of state for the fluid, for instance (and most commonly taken) of 
the form p(e, n l , . . . ,  nn). This closes the system of equations of motion. 

The equation of state is the only place where information enters about the 
nature of the particles in the fluid and the microscopic interactions between 
them. Usually, the equation of state for the fluid is taken to be the ther- 
modynamic equation of state, as computed for a system in thermodynamical 
equilibrium. The process of closing the system of equations of motions by 
assuming a thermodynamic equation of state therefore involves the implicit 
assumption that the fluid is in local thermodynamical equilibrium. It is im- 
portant to note, however, that the explicit form of the equation of state is 
completely unrestricted, for instance it can have anomalies like phase transi- 
tions. 

The ideal fluid approximation therefore allows to consider a wider class of 
systems than just an ideal gas in local thermodynamical equilibrium, which 
served as a motivation for this approximation. An ideal gas has a very specific 
equation of state without any anomalies and is given by (27) which defines 
p(T, #1,.. . ,  IZn) (which in turn allows to determine all other thermodynamic 
functions from the first law and the fundamental relation of thermodynamics, 
and thus to specify p(e, n l , . . . ,  nn), see the following remarks). 

I close this subsection with three remarks. The first concerns the notion of 
an equation of state which is complete in the thermodynamic sense. Such an 
equation of state allows (by definition) to determine, for given values of the 
independent thermodynamic variables, all other thermodynamic functions 
from the first law of thermodynamics (or one of its Legendre transforms) 

ds = ~ de - ~- nl , (28) 
i = 1  

s being the entropy density, and from the fundamental relation of thermody- 
namics 

n 

e + p ---- T s + Z / J i  ni • (29) 
i----1 

Obviously, for independent thermodynamic variables e, h i , . . . ,  nn, an equa- 
tion of state of the form s (e, n l , . .  •, n,,) is complete in this sense, since partial 
differentiation of this function yields, from (28), the functions 1/T, 1~1/T, ..., 
I~,/T. Then, the fundamental relation (29) yields the last unknown thermo- 
dynamic function, p. 

Another example of a complete equation of state is p(T, 1~1,..., #n), since 
the (multiple) Legendre transform of (28) reads 

n 

dp = s dT + Z ni d~ui (30) 
i----1 

(which is also known as the Gibbs-Duhem relation), such that the thermody- 
namic functions s, n l , . . . ,  nn can be determined from partial differentiation 
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of p. The last unknown thermodynamic function, e, can then be determined 
from (29). 

The equation of state p(e ,  n t ,  . . . , n n )  is, however, n o t  a c o m p l e t e  equation 
of state in the thermodynamic sense. Partial differentiation of this function 
yields thermodynamic functions Op/Oe,  O p / O n i ,  i = 1 , . . . ,  n, which in gen- 
eral do n o t  a l l o w  to infer the values of T, s, and #i, i = 1 , . . .  ,n. 

The second remark concerns the assumption of local thermodynamical 
equilibrium. In order to achieve local thermodynamical equilibrium, spatio- 
temporal variations of the macroscopic fluid fields have to be small com- 
pared to microscopic reaction rates which drive the system (locally) towards 
thermodynamical equilibrium. A quantity that characterizes spatio-temporal 
variations of the macroscopic fields is the so-called e ~ p a n s i o n  s c a l a r  0 =---. O . u .  

It determines the (local) rate of expansion of the fluid. Microscopic reaction 
rates are essentially given by the product of cross section and local particle 
density, F _ an .  The criterion for local thermodynamical equilibrium then 
reads 

F > > 8 ,  or a > > 0 / n  . (31) 

The third remark concerns entropy production. In ideal fluid dynamics, 
the entropy current is defined as 

S t = s u s . (32) 

Taking the projection of energy-momentum conservation in the direction of 
u~ one derives 

0 = u~, O , T  "~ = ~ + (e + p )  0 , (33) 

where d - u .  O a  is a comoving time derivative and where use has been made 
of the fact that u s is normalized, i.e., O , ( u  • u )  = O. With the first law of 
thermodynamics (28) and the fundamental relation of thermodynamics (29) 
one rewrites this as 

T (~ + s 0) + E #i (/~i + ni 0) = 0 . (34) 
i = 1  

Finally, employing net charge conservation 0- N i  = i~i + n l  0 = 0 yields 

~ + s 0 = - - - 9 . S = 0  , (35) 

i.e., the entropy current is conserved in ideal fluid dynamics. As we shall see in 
one of the following section, however, this proof only holds where the partial 
derivatives in these equations are well-defined, i.e., for continuous solutions of 
ideal fluid dynamics. Discontinuous solutions will in fact be shown to produce 
entropy. 



Fluid Dynamics 29 

2.4 D i s s i p a t i v e  F l u i d  D y n a m i c s  

In dissipative fluid dynamics one does not set u~, qU, 7r~v a priori to  zero, but  
specifies them through additional equations. There are two ways to obtain 
the latter.  The  first is phenomenological and starts from the second law of 
thermodynamics,  i.e., the principle of non-decreasing entropy, 

0 .  S _> 0 . (36) 

The  second way resorts to kinetic theory to derive the respective equations. In 
principle, bo th  ways require the additional assumption tha t  deviations from 
local thermodynamical  equilibrium are small. To make this s ta tement  more 
concise, let us introduce the equilibrium pressure Peq = peq(e, n l ,  .. •, nn),  i.e., 
it is the pressure as computed from the equation of state for given values of 
e, n l , . . . ,  nn. In a general non-equilibrium (dissipative) situation, however, 
Peq is different from the isotropic pressure p defined through (15). Denote the 
difference by 11 - Peq - P. Then, the requirement tha t  deviations from local 
thermodynamical  equilibrium are small is equivalent to requiring v~', qa, 7r u~ , 
and H to be small compared to e, Peq, and ni. 

I first outline the phenomenological approach to derive the equations of 
dissipative fluid dynamics. For the sake of definiteness, in the remainder  of 
this subsection let us consider a system of one particle species only and let us 
assume tha t  the total  particle number  of this species is conserved (implying 
tha t  no annihilation or creation processes take place, i.e., we do not consider 
the corresponding antiparticles). The particle number current  then replaces 
the net charge current. We shall also work in the Eckart frame, where u ~ = 0. 
Let  us make an Ansatz for the entropy 4-current S" .  In the limit of vanishing 
qU, 7r ~ ,  and 11, the entropy 4-current should reduce to the one of ideal fluid 
dynamics, S u -* s u ~. The only non-vanishing 4-vector which can be formed 
from the available tensors u ~, q~, and lr ~ is 13q u, where B is an a rb i t ra ry  
coefficient (remember ~r~vu~ = 0). Therefore, 

S u = s u ~ + 13 qU (37) 

With  this Ansatz one computes with the help of u~O~T ~ = 0 and 0 • N = 
/ ~ + n O = O :  

TO.  S = (T/3 - 1)O. q + q .  (it + TO#)  + 7ru~Duu~ 4- 11 8 > 0 . (38) 

The  simplest way to ensure this inequality is to choose 

= l I T  , (39) 

11 - ( o ,  (40) 

q~' -- ~ T A U "  (0~ l n T  - ,2,,) , (41) 

oou , 71"Dr ~ 2 f# 
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where if, r/, and ~ are the (positive) bulk viscosity, shear viscosity and ther- 
mal conductivity coefficients. Note that  these equations define the dissipative 
corrections as algebraic functions of gradients of the flow velocity u u and the 
equilibrium temperature T. With these choices, 

H2 q q + (43) 
D - S =  ¢T  ~ T  2 2r /T ' 

which is obviously larger or equal to zero (remember that  q. q < 0, which can 
be most easily proven from q- u = 0 in the frame where u" = (1, 0)). While 
this ensures the second law of thermodynamics, it was shown [7] tha t  the 
resulting equations of motion are unstable under perturbations and support  
acausal, i.e., superluminous propagation of information. They are therefore 
not suitable as candidates for a relativistic theory of dissipative fluid dynam- 
ics. 

A solution to this dilemma was presented by Miiller [8], and Israel and 
Stewart [9]. They observed that  the Ansatz (37) for the entropy current 
should not only contain first order terms in the dissipative corrections, but 
also second order terms: 

S " = s u  ~ + f l q ~ + Q ~  , (44) 

where 

Q~ = a 0 / / q "  + a l  lr "~ q~ + u u (~o H 2 +/~1 q" q + • 7r~XTr~x) (45) 

is second order in the dissipative quantities / / ,  qU, and 7rU~. Inserting this 
into a .  S > 0 leads to differential equations for/-/, qU, and ~ v  which involve 
the coefficients if, r/, s, a0, al , /~o, El, ~2. It can be shown that ,  for reason- 
able values of these coefficents, the resulting 14 equations of motion (the 9 
equations that  de te rmine / / ,  qU, and 7r~ and the 5 conservation equations 
for N u, T ~ )  are stable and causal. 

In the phenomenological approach, the values of these coefficients are not 
determined. In the second approach, however, based on kinetic theory, they 
can be explicitly computed along with deriving the additional 9 equations of 
motion for H, q~, and ~ .  This will be outlined in the following. 

Let us start  by writing the single-particle phase space distribution in local 
equilibrium (20) as 

/o(k,x) - g (2rr)3 [exp{yo(k,x)} 4- 1] -I (46) 

where y0(k, x) - [k. u(x) - l t(x)]/T(x).  Now assume that  the non-equilibrium 
phase space distribution, written in the form 

f(k,x) - (27r)3 [exp{y(k,x)} -4- 1] -I (47) 
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deviates only slightly from the equilibrium distribution function f0(k, x), or 
in other words: 

~ v  
(k, x) ~_ y0(k, x) + ~1 (x) + k.  ~2 (x) + k~k~ ~s (x) , (48) 

# u  
where el(x), 62~(x), and ~3 are small compared to T ( x ) ,  p (x ) .  Then one can 
expand f ( k ,  x)  around fo (k ,  x) to first order in these small quantities: 

f ( k , x )  ~- f o ( k , x )  1 +  l t: g 

Note that  f(k, x) depends on the 14 variables p / T  - e l ,  u ~ / T  + e~, and  ~3 • 
(e~ v is a symmetric tensor of rank 2, and therefore naively has 10 independent 
components. However, its trace can be absorbed in a redefinition of the first 
variable I~/T - ~1, therefore it actually has only 9 independent components.) 

Inserting f ( k , x )  into the kinetic theory definition of N~ and T ~ ,  (21) 
and (22), (with .f0 replaced by f and, since we do not consider antiparticles, 
discarding f0), one can establish relations between the 14 unknown macro-  
scopic functions (in the Eckart frame) ~, n, u ~ , / / ,  q~, Ir ~ and the 14 vari- 
ables p / T - e l ,  u~/T+sU2, e 3 ~ .  This uniquely determines the non-equilibrium 
single-particle phase space distribution f(k, x) in terms of the macroscopic, 
i.e., fluid-dynamical variables. This identification involves one subtlety: as 
in ideal fluid dynamics one still has to know the value of the (equilibrium) 
pressure Peq to determine all unknown quantities. The equilibrium pressure 
Peq is, however, only known as a function of the equilibrium energy density 
~0 and the equilibrium particle number density no, but not as function of 
the actual energy density ~ and particle number density n. Two additional 
assumptions are required, namely that 

c - uzTZ~u~ = ~o - u z T ~ u ~  , (50) 

n - u .  N = no = u .  No , (51) 

where T~ ~ and N~ are the (kinetic) energy-momentum tensor and parti- 
cle number current computed with the equilibrium phase space distribution 
fo (k ,  x) .  Then Peq(e, n) - Peq(~0, no) and the value of the equilibrium pres- 
sure Peq is also determined. On close inspection, these additional assump- 
tions do not pose any further restriction on the set of 14 unknown functions, 
but merely serve as definitions of (equilibrium) temperature T and chemical 
potential # corresponding to a given energy density e and particle number 
density n. Another way to say this is that the assumptions (50), (51) de- 
termine a local equilibrium phase space distribution fo (k ,  x).  However, in a 
non-equilibrium context this distribution has no actual dynamical meaning, 
and one is therefore free to choose it in a way which fulfills (50) and (51). 

The next step consists of deriving the equations of motion for the 14 
unknown functions e, n, u ~ , / / ,  q~, 7r,V. To this end, one takes the first three 
moments of the Boltzmann equation for f ( k ,  x) ,  

~: . a fCk, x) = c [y]  . (52) 
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This results in 

f ~-k.O.f(k,x)=_O.N= f ~-c[]]=O, (53) 

f dak - -~  kUk~k x a~, f (k ,x)  - Ot, S ~'~x = f ~-~ kVkXC[f]-  X ~'x . (55) 

Note that conservation of particle number, energy, and momentum leads to 
vanishing right-hand sides for eqs. (53) and (54). The structure of the mi- 
croscopic collision term C is such that these requirements are fulfilled (par- 
ticle number and energy-momentum conservation in microscopic collisions 
between particles) [6]. On the other hand, the right-hand side of Eq. (55) 
does not vanish, since there is no corresponding microscopic conservation 
law. Note that the trace of (55) is equivalent to m 2 times Eq. (53), such 
that X~ --- 0. Therefore, only 9 out of the set of 10 equations (55) are in- 
dependent. Together with the 5 equations (53) and (54), these 9 equations 
determine the set of 14 unknown functions of dissipative fluid dynamics. The 
9 independent equations (55) are equivalent to the 9 equations derived from 
a-  S > 0 in the phenomenological approach. The unknown phenomenologi- 
cal coefficents ~, ~, 7, a0, al ,  ~0, 81, and ~ can now be explicitly identified 
from suitable projections of X ~x. Israel and Stewart have shown [9] that the 
resulting equations fulfill the requirements of hyperbolicity and causality. 

This concludes the brief survey of dissipative fluid dynamics. So far, no 
serious attempt has been made to apply relativistic dissipative fluid dynam- 
ics towards the description of heavy-ion collisions• First steps were done by 
Mornas and Ornik [10] who investigated the broadening of collisional shock 
waves through dissipative effects in a simple one-dimensional geometry. Also, 
Prakash et al. generalized the Israel-Stewart theory to a mixture of several 
particle species [11]. 

2.5 Multi-fluid Dynamics 

In multi-fluid dynamics one considers not a single, but several fluids j -- 
1, M, characterized by the net charge currents N. ~. (the net current of 

• • • , S J  

conserved charge i in fluid j )  and energy-momentum tensors T~ v. There is 
overall net charge and energy-momentum conservation, 

M 

0 . N i = 0 ,  N~' = ~_Ni~ , (56) 
j = l  

M 

cg, T "~'=0 , T " ~ = ~ T ?  ~ , (57 / 
j = l  
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but not for each fluid separately, 

O. N,j = SIi , O,T; ~ = S~ . (58) 

The right-hand sides define the so-called source terms which according to 
(56), (57) obey 

M M 

s , j  = 0 ,  = 0 .  (59)  
j = l  j = l  

The source terms are parameters of a particular model and have to be spec- 
ified e.g. from kinetic theory. Let us consider the Boltzmann equation for 
particles from fluid j:  

= E c r] 
k lm  

The right-hand side involves the collision terms for the microscopic 2-particle 
jk 

reactions lm -} jk  (the gain term Ct,n) where particles from fluid I and fluid 
m (l and m not necessarily different) collide to produce particles of fluid j 
and k (again, j and k not necessarily different), and jk  -+ Im (the loss term 

lm  Cjk ) where particles from fluid j and k collide to produce particles of fluid l 
and m. Taking the zeroth and first moment of this equation yields 

O.T:*" = / ~ - k ' k ~  O. fj(k,x) : ~ f dEk k ~" [C,~ - g ~ ]  =- S~ (62) 

This defines the source terms through the microscopic collision rates. 
Results of any specific multi-fluid model will not be discussed here, I 

instead refer the reader to the literature on this subject [12]. I close with two 
remarks: (a) a single fluid may consist of several different particle species 
(for instance, ~r, K, N, A etc.), as long as it is reasonable to assume that 
they stay in local thermodynamical equilibrium among each other. Then, 
the only place where information enters about these different particle species 
is the equation of state p(e, nl , . . .  ,nn). (b) Different fluids may consist of 
the same particle species (with the same equation of state p(e, n l , . . . ,  nn)). 
This situation occurs for instance in the initial stage of relativistic heavy-ion 
collisions, where the single-particle phase space distributions of target and 
projectile nucleons, while overlapping in space-time, are still well separated 
in momentum space due to the high initial relative velocity between them. 
This is a situation where there is local thermodynamical equilibrium in target 
mad projectile separately, but not between them. It therefore is reasonable to 
treat target and projectile, although consisting of the same particle species, 
as two separate fluids. 
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3 Numerical  Aspects  

In this section, I discuss basic aspects of numerical solution schemes for rel- 
ativistic ideal fluid dynamics. For the sake of simplicity, let us consider the 
case of one conserved charge only. Define 

R = _ N  ° - - n u  ° = n ~ f  , (63) 

E - T oo = (e + p)72 - p , (64) 
01 M -- { T  }i=x,~,~ = (e + p )q2v  , (65) 

where u ~ = 7 (1 ,v )  is the fluid 4-velocity, 7 = (1 - v2) -1/2.  With these 
definitions, the conservation laws (7), (8) take the form 

O.  N = OtR + V . ( R v )  = 0 , (66) 

o. T = 0rE + V .  [(E + = 0 ,  (67) 

O~ T ~i = OtM i + V .  (Miv)  + 0/p = 0 . (68) 

In this form, the conservation equations can be solved numerically with any 
scheme tha t  also solves the non-relativistic conservation equations. There  is, 
however, one fundamental difference between the non-relativistic equations 
and the relativistic ones. In order to solve the latter for R, E ,  M ,  the net 
charge density, energy density, and momentum density in the calculational 
frame,  one has to know the equation of state p(e, n) and v. The equation of 
state, however, depends on n, e, the net charge density and energy density in 
the rest f rame  of  the fluid. One therefore has to locally transform from the 
calculational frame to the rest frame of the fluid in order to extract  n, e, v 
from R, E ,  M .  In the non-relativistic limit, there is no difference between n 
and R, or e and E and the equation of state can be employed directly in the 
conservation equations. Also, the momentum density of the fluid is related 
to the fluid velocity by a simple expression. The transformation between rest 
frame and calculational frame quantities is described explicitly in the next  
subsection. 

3.1 T r a n s f o r m a t i o n  B e t w e e n  C a l c u l a t i o n  F r a m e  
a n d  F l u i d  R e s t  F r a m e  

In principle, the transformation is explicitly given by equations (63) - (65), 
i.e., by finding the roots of a set of 5 nonlinear equations (the non-linearity 
enters through the equation of state p(~, n)).  In numerical applications, how- 
ever, this t ransformation has to be done several times in each t ime step and 
each cell. It is therefore advisable to reduce the complexity of the transfor- 
mation problem. This is done as follows [13]. 

First  note tha t  M and v are parallel, thus 

M . v - M v = (e + p)72v2 = (~ + p)(72 - 1 )  = E - e , (69) 
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where M = IMI ,  v = Ivl. Therefore, 

e = E - M v  , n = R V / 1 - v  2 , (70) 

where the second equation is a simple consequence of (63). With  these equa- 
tions e and n can be expressed in terms of R, E,  M and v. The 5-dimensional 
root search is therefore reduced to finding the modulus of v for given R, E,  
and M, which is a simple one-dimensional problem. To solve this, use the 
definition of M,  

M = (e + p ) 7 2 v  = (E  + p ) v  . (71) 

This equation can be rewritten as a fixed point equation for v for given 
R, E,  M: 

M 
v = E + p (E - M v, Rv/T'L--~) " (72) 

The fixed point yields the modulus of the fluid velocity, from which one can 
reconstruct v = v M / M ,  and find e and n via (70). The equation of state 
p(e, n) then yields the final unknown variable, the pressure p. 

3.2 Operator Splitting Method 

In general, to model a heavy-ion collision with ideal fluid dynamics requires 
to solve the 5 conserwtion equations in three space dimensions. Since this is 
in general a formidable numerical task, one usually resorts to the so-called 
operator splitting method,  i.e., the full 3-dimensional solution is constructed 
by solving sequentially three one-dimensional problems. More explicitly, all 
conservation equations are of the type 

OtU + E O i F i ( U ) = O  , (73) 
i----z,y,z 

U being R, E,  or M i. Such an equation is numerically solved on a space-time 
grid, and time and space derivatives axe replaced by finite differences: 

U,~ + '  = U ~  - A t G  [U~j~] , (74) 

where i, j ,  k are cell indices (the cell number in x, y, and z direction) and n 

[U n ] is a suitable finite denotes the time step. At is the time step width. G iik 

difference form of the 3-divergence in (73). 
It can be shown tha t  in the continuum limit instead of solving (74) it is 

equivalent to solve the following set of predictor-correetor equations 

" + '  = - A t a ,  , 

i t(2) n + l  = U(1) n+ l  [/?(1).+11 
ijk ijk - A t  G~ L~.~k j , (75) 

Uin-}-I ~. /-r(2) nq-1 rrr(=) . + '  ] jk ~ijk - A t G z  (76) L~ iJ k J ' 
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and tha t  the solution converges towards the solution of (73). Here, the Gi [U], 
i = x ,y ,  z, are finite difference forms of the partial derivatives O~ Fi(U) (no 
summation over i) in x, y, or z direction, rr(1)n+z ~ij~ is the first prediction for 
the full solution Ui~ +1. It is generated by solving a finite difference form of 
the one-dimension~ equation 

Ot U + FdU) = 0 ,  (77) 

where i = x. Subsequently, the first prediction IT(l) n+l  v~j k is used to solve a 
finite difference form of (77), where now i = y, to obtain the second predic- 
tion U(~2 n+l for the full solution, rUO)"+l . (2)  . + , ~  x ijk has been corrected to vi i  k ./ 

TTn+I TT(2) n+l  Finally, the full solution vijk is obtained by using ~ijk to solve a finite 

[~r(2) ,+1 has been corrected to U ~  1.) difference form of (77) with i -- z. ~vijk 
In other words, the solution to the partial differential equation (73) in 

three space dimensions is obtained by solving a sequence of partial differential 
equations (77) in one space dimension. The 3-divergence operator in (73) 
was split into a sequence of three partial derivative operators. Physically 
speaking, in a given time step one first propagates the fields in x direction, 
then in y direction, and then in z direction. In actual numerical applications 
it is advisable to permutate the order xyz to minimize systematical errors. 

The advantage of the operator splitting method is that  there exists a 
variety of numerical algorithms which solve evolution equations of the type 
(77) in one space dimension (see, for instance, [14] and refs. therein). One of 
them is discussed in the following subsection. 

3.3 T h e  Relat iv i s t i c  H a r t e n - L a x - v a n  Leer -Einfe ld t  A l g o r i t h m  

The relativistic Harten-Lax-van Leer-Einfeldt (HLLE) algorithm [14,15] sol- 
ves equations of the type 

Ot U + Oz F ( U )  = O , (78) 

i.e., propagation of a field U in one space dimension. For ideal relativistic 
fluid dynamics, U = R, E, or M and F(U) = Rv, (E + p)v, or M y  + p. (For 
one-dimensional propagation, it is sufficient to consider only the components 
of the momentum density M and the fluid velocity v in the direction of 
propagation. They are here denoted by M and v, respectively.) 

The idea behind the relativistic HLLE scheme is the following. Consider 
the initial distribution of the density U on a numerical grid. U is assumed 
to be constant inside each cell, but different from cell to cell, i.e., the initial 
distribution consists of a sequence of constant flow fields inside the cells 
separated by discontinuities at the cell boundaries, cf. Fig. 1. 
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Fig. 1: The initial distribution of the density U on the numerical grid. 

In the further time evolution these discontinuities will decay, resulting in 
the transport of U across the grid. The decay of a discontinuity between two 
regions of constant flow is, however, a well-known problem in fluid dynamics, 
the so-called Riemann problem. For simple equations of state it is even ana- 
lytically solvable. Consider the discontinuity to be located at x = 0. Denote 
the density in the region of constant flow to the left of the discontinuity by 
Ul, and that to the right by Ur. The initial condition at time t = 0 then reads 

u(z, 0) = { < 0 (79) 
Ur, z > O  ' 

cf. Fig. 2 (a). For the sake of definiteness, consider UI > U~. For t > 0, 
the solution looks qualitatively as in Fig. 2 (b). There is a rarefaction fan 
propagating into the region of higher density (in this case to the left), and 
a shock front into the region of lower density (in this case to the right). 
Between fan and shock wave there are two regions of constant flow separated 
by a contact discontinuity (a discontinuity where the pressure is equal on 
both sides). It is evident that a numerical algorithm can be constructed which 
solves the fluid dynamical equations simply by solving a sequence of Riemann 
problems for the discontinuities at all cell boundaries in a given time step. 
Such algorithms are called Godunov algorithms [16]. 

The relativistic HLLE is a so-called Godunov-type algorithm [16], i.e., it 
does not employ the full solution of the Riemann problem but approximates 
it by a region of constant flow between Ut and Ur, cf. Fig. 2 (c): 

UI , x < b l t  
U(x,  t) = Ulr , bjt  < x < br t (80) 

ur, x>_-brt 
Here, bj < 0 and br > 0 are the so-called signal velocities. They characterize 
the velocities with which information about the decay of the discontinuity 
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Fig. 2: (a) The initial condition of the Riemann problem at t = 0. (b) The solution 
of the Riemann problem at t > 0. (c) The approximate solution of a Godunov-type 
algorithm. 

travels to the left and right into the regions of constant flow. The value Ulr 
in the region of constant flow between Ul and Ur is determined in accordance 
with the conservation laws. To this end, integrate (78) over a fixed interval 
[Xmin, Xmax], Xmin < bl t, Xmax > br t. One obtains: 

UIr = br Ur - bl Ui + F(UI) - F(Ur)  (81) 
br - bl 

The value of the flux F(UIr) corresponding to the density Ulr is determined 
by integrating (78) over the fixed interval [0, Xmax] or [Xmin,0]: 

br F(UI) - bl F(Ur)  + bl br (Ur - Ui) 
F(Ulr) = br - bl (82) 

Upon discretization, the differential operator 0z F (U)  in the evolution equa- 
tion for the density Ui in cell i assumes the form [F(Ui+I/z)  - F ( U i - 1 / 2 ) ] / A x  
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where Ax is the cell size (grid spacing) and Ui+l/2 are values of the den- 
sity at the position of the right and left boundary of cell i. These values are 
taken after the decay of the respective discontinuities at the cell boundaries, 
i.e., they are the corresponding values UIr given by (81) and the respective 
F(Ui+l /2  ) are the corresponding values F(UI,)  given by (82). This yields the 
following explicit expressions for the relativistic HLLE scheme 

+' = u? - 

F(U~n+I/2~, ) = b r F ( U ~ ) - b , F ( U ~ + , ) + b r b , ( U ~ + , - U ~ )  (84) 
br - bl 

A reasonable estimate for the signal velocities is to take them as the rela- 
tivistic addition (subtraction) of flow velocities and sound velocities in the 
respective cells adjacent to the cell boundary: 

+ e;,~+~ (85) 
br = max 0, 1 + vi+ 1 c~,i+ ~ n n 

bl = rain O, i - v-i d c~.--~ " 

As described above, this scheme is accurate to first order in time. A scheme 
which is accurate to second order can be obtained using half-step updated 

fTT-+I/2~ values F \~i+1/2 ) ,  for more details see [17]. 

4 O n e - D i m e n s i o n a l  S o l u t i o n s  

In this section I discuss solutions of ideal relativistic fluid dynamics in one 
space dimension. I first introduce the notion of characteristic curves. Then, I 
discuss possible one-dimensional wave patterns for thermodynamically nor- 
mal and anomalous media. Choosing a representative equation of state which 
features both thermodynamically normal and anomalous regions I then dis- 
cuss the expansion of semi-infinite matter into the vacuum. The emerging 
wave patterns will help us to understand the possible solutions of the Lan- 
dau model, which was historically the first fluid-dynamical model for relativis- 
tic heavy-ion collisions. Finally, also the Bjorken model for ultrarelativistic 
heavy-ion collisions is discussed. 

4.1  O n e - D i m e n s i o n a l  W a v e  P a t t e r n s  

For flow in one spatial dimension (say, in x direction) the two conservation 
equations for energy and for momentum read: 

OfT  °° + Oz T ~° = 0 , cgt T °~ + 02 T z2 = O . (87) 
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A suitable linear combination of these equations leads to the equivalent set 
of equations 

( v ± c s  Ox) 7~+=O (88) 
0t + 1 ± v - - - ~  

where ~ = Op/Oels/n is the velocity of sound squared (s in  is the specific 
entropy) and 

I' R+ = y - Y0 + de' cs(e') (89) 
~o d + p(d) 

are the so-called Riemann invariants, y =_ Artanhv is the fluid rapidity. Equa- 
tion (88) has the obvious interpretation that  the Riemann invariants T~+ are 
constant along world lines x~=(t) defined by 

dx+ (t) v ± c~ 
= w +  = ( 9 0 )  

dt 1 ± v c s  

These world lines are the so-called characteristic curves or characteristics 
C+(x, t). It is also obvious that  these curves are the world lines of sonic pertur- 
bations or sound waves on top of the fluid-dynamical wave pattern.  C+ (x, t) 
characterizes sound waves moving to the right (in positive x direction) while 
C_ (x, t) characterizes those moving to the left (in negative x direction). For 
the simple example of constant flow, the characteristic curves are shown in 
Fig. 3. 

t 

v 0  Too 

>x > 

Fig. 3: The characteristic curves for a constant flow pattern. 

X 

Let us now consider a so-called simple rarefaction wave moving to the 
right, cf. Fig. 4. (For the definition of a simple wave, see [18], for our purposes 
it is sufficient to remark that  in one spatial dimension a simple wave is the only 
possible wave tha t  can connect two regions of constant flow. A rarefaction 
wave denotes a wave where the energy density decreases in the direction 
of propagation.) Then, one can prove that  T~+ = const, everywhere (for the 
proof, see [18]; analogously, for simple waves moving to the left, 7~_ = const.). 
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) X 

Fig. 4: A continuous simple wave between two regions of constant flow, moving to 
the right. 

It is therefore sufficient to consider the equation for the 7E_ invariants, or 
the C_ characteristics, respectively. Let us consider how the slope of the C_ 
characteristics changes with x at constant t: 

aw-  I w' v '( l  - ~)  - ~(1 - v 2) 
-g- z'l - - =  (1-vc )2 

(91) 
t 

From T~+ = const, everywhere one infers 

v , = _ ( l _ v 2 )  cs e' , (92) 
e + p  

while 

Therefore, 

where 

, 1 02p e' (93) 
cs-- 2cs ~e2 s/n " 

1 - -  W 2 - 

w~ -- 2cs(1 - cs 2) 27e' , (94) 

sin 1 - 
c92P + 2 cs 2 (95) 

Equation (94) is an important qualitative result: Since the first factor is 
always positive (w_ as well as cs are causal), and since the energy density 
decreases with x for the rarefaction wave considered here, e' < 0, the sign 
of w" is solely determined by the sign of 27. The quantity 27, however, is 
solely determined by the equation of state of matter  under consideration, 
i.e., its sign (and absolute value) is an intrinsic property of the fluid. Matter  
with 27 > 0 is called thermodynamically normal, while matter  with 57 < 0 
is thermodynamically anomalous. More specifically, if 27 > 0, then w"  > 0, 
and if 27 < 0, then w'_ < 0. A positive wL, however, means tha t  the C_ 
characteristics "fan out" in the x - t plane, while a negative w'_ indicates 
that  they  converge and ultimately intersect at  one point, cf. Fig. 5. 
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Fig. 5: For a simple wave moving to the right and (a) 17 > 0 the C- characteristics 
fan out, while for (b) ~ < 0 they converge and intersect. 

Intersecting characteristics, however, signal the formation of shock waves. 
Physically speaking, picture a sonic perturbat ion (travelling along a char- 
acteristic) emitted at a point z l .  This per turbat ion will eventually overtake 
a per turbat ion emitted at x2 > xl  (namely when the corresponding char- 
acteristics intersect). Thus, the two small perturbat ions add up to form a 
larger one. Imagine this happening for other perturbations (emitted at differ- 
ent points) as well. Eventually, a finite discontinuity (shock wave) is formed 
from the superposition of a large number of infinitesimal sonic perturbations.  
Shock waves are discontinuous solutions of ideal fluid dynamics and will be 
discussed in more detail in the following subsection. 

I conclude this subsection by collecting the above arguments in the fol- 
lowing classification scheme of one-dimensional wave patterns.  Continuous 
rarefaction waves are stable in thermodynamically normal mat ter  while they 
are unstable in anomalous matter. On the other hand, rarefaction shock waves 
are stable in thermodynamically anomalous mat ter  while they are unstable in 
thermodynamically normal matter. If we perform an analogous consideration 
for a continuous compression wave we are led to the conclusion tha t  such 
waves are unstable in normal and stable in anomalous matter ,  while com- 
pression shock waves are stable in normal and unstable in anomalous matter .  
These results are summarized in Table 4.1. A "+"  sign means "stable" while 
a " - "  sign indicates "unstable". 

Most mat ter  is thermodynamically normal. In the presence of phase t ran-  
sitions, however, an equation of state can feature regions where ma t t e r  is 
thermodynamical ly  anomalous. As will be seen in Subsections 4.4 and 4.5, 
this will strongly influence the t ime evolution of the system in a qualitative 
and quanti tat ive way. 
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Table 1: Classification scheme for the stability of one-dimensional wave patterns. 

Wave IE > 01L'< 0 

Continuous rarefaction 
Rarefaction shock 
Continuous compression 
Compression shock 

+ 

+ 

÷ 
+ 

4 .2  S h o c k  D i s c o n t i n u i t i e s  

Shock waves represent discontinuous solutions of ideal fluid dynamics. While 
the partial derivatives of N f  and T "~ appearing in the conservation equations 
are ill-defined at the location of such discontinuities, there is still a simple 
way solve the problem of charge and energy-momentum transport across a 
shock discontinuity. To this end, let us consider the case of one conserved 
charge only, and study such a discontinuity in its rest frame. Matter enters 
the discontinuity with velocity v0 in a thermodynamic state characterized by 
the net charge density no, the energy density e0, and the pressure Po (which 
is of course determined by e0 and no through the equation of state). The task 
is to determine the velocity v and the thermodynamic state of matter (n, e, 
and p) emerging from the shock. Imagine a small volume V which encloses 
the discontinuity, cf. Fig. 6. 

V o 

£o 

[ . - -  

I 
I 
I 

I 
I ) , 
I 
! 

I 

P o l l .  ' , 
! 

I 

V 

- ) v  

) x  

Fig. 6: A shock discontinuity in its rest frame. 

Let us now integrate the conservation equations (7) (for a single conserved 
charge) and (8) for one-dimensional flow over V: 

cgt /vd3X N° + /yd3Xcg= NZ = O , (96) 
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cg~ / v  dS X T°° + / v  dS X O~ Tx° = O , 

Ot /vdSxTX° + fvdSXOxTzz =O . 

(97) 

(98) 

In a steady-state situation (a stable, propagating shock discontinuity) the 
total  amount of charge, energy and momentum inside V cannot change with 
time, therefore, the first terms in these equations vanish. The other terms are 
integrated by parts to yield the set of equations 

nO')'OVO -- nq'V , 

(~0 + ~ ) ~ V o  = (~ +P)~2 V , 

(~o + ~)~,o~,,,~ + r,o = (~ + p) ~,~ v ~ + , ,  • 

(99) 

(100) 

(101) 

These are the conservation equations for net charge and energy-momentum 
across a shock discontinuity. They are no longer partial differential equations, 
but purely algebraic. For a given initial state no, e0, Po, and velocity v0, they 
determine the final state n, e, p, and the velocity v of compressed mat ter  
emerging from the shock, if the equation of state p(e, n) is known. 

One can eliminate the velocities from the set of equations (99) - (101) to 
obtain the so-called Taub equation [19] 

+ p )X  - + po)Xo = (p - po)(X + Xo) , (lO2) 

where X - (e+p) /n 2 is the so-called generalized volume. Once p(e, n) is fixed, 
the solution of the Taub equation defines the so-called Taub adiabat p(X), 
cf. Fig. 7. For a given initial state (Po, Xo) (the so-called center of the adia- 
bat) it represents all final states (p, X) for matter  emerging from the shock, 
which are in agreement with net charge and energy-momentum conservation. 
The actual final state is then selected by specifying v0. This determines all 
variables uniquely in the rest frame of the shock. The remaining unknown 
is, however, the velocity of the shock in an arbitrary calculational frame. For 
compressional shock waves, such as occur in the initial stage of heavy-ion col- 
lisions (cf. [20] for a detailed discussion), this shock velocity can be uniquely 
determined from the geometry of the collision. For rarefaction shock waves 
this is not possible, and thus in principle there is a whole region of final states 
on the Taub adiabat, which are in agreement with energy-momentum and net 
charge conservation. It turns out, however, that  the stat ionary situation is 
always given by a rarefaction shock where matter  emerges at the so-called 
Chapman-Jouguet point, indicated by "CJ" in Fig. 7 (b) [5]. This point is 
defined as the point where a chord between the center (Po, X0) and a final 
state on the adiabat is tangential to the adiabat. This then uniquely fixes 
the state of matter  emerging from the shock, as well as the velocity of the 
shock in the calculational frame. Note that  it is also possible to define a Tanb 
adiabat  in the case that  there is no conserved charge, see [17,21] for details. 
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Fig. 7: (a) The Taub adiabat for a compressional shock wave. (p0, X0) is the center 
of the adiabat, (p, X) is one final state on the adiabat which is selected by a choice of 
vo. (b) The Taub adiabat for a rarefaction shock wave. "CJ" denotes the Chapman- 
Jouguet point. 

To conclude this subsection, let us consider what happens to the entropy 
flux across a shock discontinuity, Integrate the conservation equation (35) for 
the entropy current over the volume V which encloses the shock front in its 
rest frame, 

O t / v d 3 Z s ~ + / v d 3 W O = s ' T v = O  , (103) 

and perform an integration by parts in the second term. This yields: 

s "r v = So'roVo + ~ Ot S , (104) 

where A± is the transverse area of the shock front and S - f v  d3x s q, is the 
total  entropy inside the volume V. The second law of thermodynamics tells 
us tha t  the entropy cannot decrease, at 8 _> 0. Consequently, 

s') ,v >_ So')'oVo • (105) 

Dividing both sides by (99) one concludes 

s > So (106) 
n n0 

i.e., the specific entropy increases across a shock front. This result is re- 
markable, since we know that  the entropy current is conserved in ideal fluid 
dynamics, Eq. (35). However, this equation holds strictly only for contin- 
uous (differentiable) solutions. Shock discontinuities do not belong to this 
class, and therefore can produce entropy. Physically speaking, microscopic 
non-equilibrium processes take place inside a shock front which lead to this 
increase of entropy. 
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One could object tha t  this conclusion is not stringent in the sense tha t  
(106) also allows for the case where s / n  = so~no, i.e., where the entropy 
does not increase across the shock front. However, by explicitly solving the 
shock equations (99) - (101) with a given equation of state one finds tha t  
this case occurs only for infinitesimal shock discontinuities (which then de- 
generate into sonic perturbations, which in tu rn  preserve entropy).  For any 
finite discontinuity one finds s / n  > so~no. 

The  Chapman-Jougue t  point (cf. Fig. 7) is actually special in this respect: 
it corresponds to tha t  state of mat ter  emerging from the shock, where en- 
t ropy production is maximized [5]. It  is amusing to note tha t  in selecting this 
s ta te  as the final state of mat ter  emerging from a rarefaction shock wave (cf. 
discussion above), fluid dynamics not only automatically respects the second 
law of thermodynamics,  but even exploits it to the maximum extent.  

4.3 E q u a t i o n  o f  S ta te  and E x p a n s i o n  into  V a c u u m  

In this subsection I discuss possible wave pat terns for the one-dimensional 
expansion of semi-infinite mat ter  into the vacuum. To be specific, let us first 
choose an equation of state which bears relevance to relativistic heavy-ion 
physics. At zero net baryon number, QCD lattice data  [4] suggest the follow- 
ing Ansatz for the entropy density as function of temperature:  

s ( T )  = cHT 3 1 - tanh[(T - Tc) /AT]  +CQT 31 + tanh[(T - T c ) / A T ]  (107) 
2 2 ' 

where cQ/cH is the ratio of degrees of freedom in the quark-gluon phase and 
the hadronic phase, Tc ~ 160 MeV is the (phase) transit ion temperature ,  and 
A T  is the width of the transition. Present lattice da ta  are not yet sufficiently 
precise to decide whether the transition is first (corresponding to A T  ---- 0) 
or higher order, or just a smooth cross-over transition, but  they restrict  A T  
to be within the range 0 <_ AT ~ 0.1 To. Note tha t  for A T  = 0 the equation 
of s tate  becomes that  of the well-known MIT bag model [22] with a bag 
constant B = (CQ/CH -- 1)pc, where Pc is the pressure at the phase transi t ion 
tempera ture  To. 

To cover the possible range of AT, we shall consider the limiting values 
A T  = 0 and AT -- 0.1 Tc in the following. Both  cases will be compared to 
results for an equation of state where there is no transition to the quark-gluon 
phase, i.e., where 

s ( T )  = s n ( T )  = cHT 3 . (108) 

Once s ( T )  is known one can compute other thermodynamic variables from 
fundamental  thermodynamic relations, for instance: 

T 

P = fo  d T '  s (T ' )  , e = T s - p . (109) 



Fluid Dynamics 47 

The three equations of state considered here are explicitly shown in Fig. 8. 
The  ratio of degrees of freedom cQ/cH was chosen to  be 37/3, corresponding 
to  an ultrarelativistic gas of u and d quarks and gluons in the quark-gluon 
phase and a massless pion gas in the hadronic phase. 
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Fig. 8: (a) The entropy density divided by T 3 a s  a function of T. (b) The energy 
density divided by T ~ as a function of T. (c) The pressure as a function of energy 
density. (d) The velocity of sound squared as a function of energy density, cQ/CH = 
37/3. Units of energy are T¢, units of energy density are Test, where sc - (cQ + 
CH) T3/2. Solid line: AT = 0, dotted line: AT = 0.1 To, dashed line: ideal hadron 
gas. 

Figs. 8 (a,b) show the entropy density divided by T 3 and the energy 
density divided by T 4 as functions of T. This representation of the equation 
of s tate  is commonly used by the lattice QCD community. On the other  
hand, fluid dynamics requires the pressure as a function of energy density, 
p(e), which is shown in Fig. 8 (c). The collective evolution of the fluid is, 
however, controlled by pressure gradients. Figure 8 (d) shows the velocity of 
sound squared ~ - dp/de (if there are no conserved charges). This quanti ty 
determines the pressure gradient dp for a given gradient in energy density 
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de, i.e., it characterizes the capability of the fluid to perform mechanical 
work, or in other words, it characterizes the expansion tendency. Thus,  for 
the equation of state with a first order phase transition, A T  ---- 0, in the 
mixed phase of quark-gluon and hadronic matter ,  e H <  e < eQ, the system 
does not  perform mechanical work and therefore has no tendency to expand. 
As will be seen in the following this will have profound influence on the t ime 
evolution of the system. 

For the equation of state with a smooth cross-over transition, A T  = 0.1 Tc, 
the expansion tendency is not zero, but still greatly reduced in the transit ion 
region as compared to the ideal gas equation of state without any transit ion 
( 2  = 1/3 = const, for all values of e). The transition region eH ~ e ~ eQ is 
referred to as the "soft region" of the equation of state [23]. For an equation 
of state with a first order transition, the point e = eQ is called the "softest 
point" of the equation of state [24]. (This notion comes from considering the 
function p(e ) /e  which has a minimum at eQ.) 

Another quanti ty of interest is ,U, which determines whether mat te r  is 
thermodynamical ly normal or anomalous. Figure 9 shows this quanti ty (times 
T s )  as computed from (95) for the three equations of state studied here. For 
A T  ---- 0, mat te r  becomes anomalous in the mixed phase, the other  two equa- 
tions of state are thermodynamically normal everywhere. (Strictly speaking, 
,U -- 0 only vanishes in the mixed phase, but  does not become negative. This 
is, however, sufficient for the formation of stable rarefaction shock waves.) 

Let us now consider the one-dimensional expansion of semi-infinite mat te r  
into the vacuum. Figure 10 shows temperature  profiles for (a) the expansion of 
an ideal gas and (b,c) for the expansion with the AT ---- 0 equation of state. In 
(b) the initial energy density of semi-infinite mat ter  is chosen to be well above 
eQ, the phase boundary between the quark-gluon and the mixed phase, in (c) 
the initial energy density is just  below eQ. The dotted line in (a) indicates 
the initial temperature  profile for all cases. The initial profile indicates a 
discontinuity at x = 0 which separates two regions of constant flow, the 
semi-infinite slab of mat ter  at rest to the left (x < 0), and the vacuum to the 
right (x > 0). This initial condition is in fact a special case of the Riemann 
problem discussed in Subsection 3.3. From general arguments (see above) the 
solution at t > 0 can only be a simple wave, connecting these two regions of 
constant flow. For the ideal hadron gas which is thermodynamical ly  normal 
mat ter ,  we have seen above that  this simple wave must be a continuous 
rarefaction wave, in this case moving to the right. As mentioned above, for 
such a wave the Riemann invariant T£+ -- const, everywhere, cf. (89), from 
which we deduce the relationship between the fluid rapidity y and the energy 
density e on the rarefaction wave: 

cs In k (110) 
y(e) -- l + c 2 eo ' 
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Fig. 9: The quantity ,U (times Ts) as a function of e for AT = 0 (solid line), 
AT = 0.1 Tc (dotted line), and the ideal hadron gas equation of state (dashed line). 

where we have used the fact that  for the ideal hadron gas equation of s tate  
p -- ~ e  and that  the initial fluid rapidity of the semi-infinite slab is zero, Y0 --- 
0. The fluid velocity on the rarefaction wave is then given by v(e) = t anh  y(e). 
Finally, the position at which one finds a given energy density e at  t ime t can 
be deduced by integrating (90) for the non-trivial C_ characteristics: 

x(e) - 1 - - v ~ ) ~  t , (111) 

where we have used the fact that  the initial position of the simple wave is 
at  x - 0 and tha t  as ~ eonst, for the ideal hadron gas equation of state (we 
have assumed tha t  the hadron gas consists of massless, i.e., ultrarelativistic 
pions, for which es 2 = 1/3). Equation (111) tells us tha t  the rarefi~:tion wave 
moves with sound velocity into the semi-infinite slab of mat ter  (to the left), 
XA = --ast, and with the velocity of light into the vacuum (to the right), 

X B = t .  

The  expansion in the case of a first order phase transition, A T  ---- 0, proceeds 
similarly, with the exception that  in the region of energy densities correspond- 
ing to the mixed phase, mat ter  is thermodynamically anomalous, cf. Fig. 9, 
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Fig. 10: Temperature profiles for the expansion of semi-infinite matter into vacuum. 
(a) Ideal hadron gas equation of state, the dotted line indicates the initial state, 
the temperature is normalized to the initial temperature To. (b,c) Equation of state 
with AT ----- 0, in (b) the initial energy density is well above eQ, in (c) it is just below 
e O. The temperature in (b,c) is normalized to the critical temperature To. 

such tha t  from Table 4.1 we conclude tha t  the stable wave pa t t e rn  is not a 
continuous rarefaction wave, but  a rarefaction shock wave. Thus,  as long as 
ma t t e r  is in the ( thermodynamical ly  normal)  quark-gluon phase, the expan-  
sion will proceed as a continuous rarefaction wave as in Fig. 10 (a), but  upon 
entering the mixed phase (energy density eQ, t empera tu re  To) a rarefact ion 
shock wave will form. The s ta te  of mat te r  emerging from this shock wave is 
determined from the shock equations as described in the previous subsection, 
i.e., it corresponds to the C hapm an- J ougue t  point on the Taub  ad iaba t  with 
center located at  the phase boundary  between quark-gluon and mixed phase  
(for more details, see [17]). Then,  also the velocity of the shock Vsh in the 
calculational f rame is determined. In general Vsh and the velocity of ma t t e r  
a t  the base of the continuous rarefaction wave are not equal. This  leads to 
the format ion of a plateau of constant  flow between xB and xc .  The  s ta te  
of  ma t t e r  at  the Chapm an- J ougue t  point corresponds to the rmodynamica l ly  
normal  hadronic mat te r ,  so tha t  the further expansion has to  proceed as a 
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continuous rarefaction wave. The emerging wave pattern is shown in Fig. 10 
(b). 

The only difference between Fig. 10 (b) and (c) is that the initial energy 
density in (c) is already below eQ, i.e., in the region corresponding to mixed 
phase. Therefore, the expansion starts out with a rarefaction shock wave, 
from which matter emerges at the Chapman-Jouguet point of the respective 
Taub adiabat with center corresponding to the initial state of matter. (Note 
that  this Taub adiabat differs from the one in (b), since their centers are 
different.) Further expansion proceeds as a continuous rarefaction wave in 
hadronic matter. 

This completes the discussion of the expansion of semi-infinite matter into 
vacuum and prepares us to understand the Landau model which is subject 
of the next subsection. 

4.4 T h e  L a n d a u  M o d e l  

The Landau model is historically the first case where fluid dynamics was ap- 
plied to describe - at that time - hadron-hadron collisions [25]. Its main focus 
of application nowadays is, of course, nucleus-nucleus collisions. The main 
ideas are summarized in Fig. 11. Imagine two nuclei colliding at ultrarela- 
tivistic velocities in their center of mass. The nuclei are Lorentz-contracted 
to a "pancake-like" shape. In the moment of impact, nuclear matter becomes 
highly excited (the detailed microscopic processes which happen during this 
stage are of no concern for the following). In the limit that the velocities of 
the nuclei v --* 1, there will be no baryon stopping (due to the limited stop- 
ping power of nuclear matter), i.e., the baryon charges will pass through each 
other unscathed, leaving highly excited, net baryon-free matter in their wake. 
Due to Lorentz contraction, the initial extension 2 L in z direction of this slab 
of highly excited matter is much smaller than the transverse size of the slab, 
such that the expansion will proceed mainly in the longitudinal direction and 
is thus essentially one-dimensional. The Landau model assumes that  the slab 
has no initial collective velocity and that rapid thermalization takes place 
which is completed at t = 0. It is also assumed that the equation of state 
has the simple ultrarelativistic form p = ~e, ~ = const., i.e., that  matter 
is thermodynamically normal for all e. (The original idea of Landau actually 
was that the baryons are immediately stopped in the collision through com- 
pressional shock waves. Data from heavy-ion experiments at BNL-AGS and 
CERN-SPS prove that this picture is unrealistic, due to the aforementioned 
finite stopping power of nuclear matter. However, since the collision is ul- 
trarelativistic, the thermal energy in the highly excited slab is much larger 
than the chemical energy associated with the conservation of baryon charge. 
Therefore, to good approximation, #B = nB = 0, and the further evolution 
of the slab will be identical to what is discussed here.) 
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Fig. 11: The Landau model for nuclear collisions. See text for details. 

For t > 0, the slab starts  to expand. As in the expansion of semi-infinite 
ma t t e r  discussed in the previous subsection, rarefaction waves will form. For 
thermodynamical ly  normal mat ter ,  these are continuous (Riemann) rarefac- 
t ion waves which travel  into the slab with sound velocity. Therefore,  they  
will meet  a t  the center of the slab (here chosen to be the origin z = 0) at  a 
t ime L/cs. For t imes t > L/cs, these waves overlap and the solution becomes 
more complicated. In a region near the light cone, the solution will remain  a 
Riemann rarefaction wave, therefore we te rm this region the  Riemann region. 
In the center where the Riemann rarefaction waves overlap, however, the so- 
lution is no longer a simple wave (indeed, only two regions of constant  flow 
have to be connected by a simple wave [18], for two simple waves no such 
theorem exists). For ~ = const, the solution can still be given in closed ana- 
lytic form [25], a l though the derivation is ra ther  complicated. However, since 
two of our equations of s tate  do not have constant  velocities of sound, we 
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have to resort to  numerical solution methods, such as the relativistic HLLE 
discussed above. In principle, numerical algorithms can deal with arb i t rary  
(physically reasonable) equations of state, and are therefore well able to han- 
dle this problem (although one should test  them thoroughly for tes t  cases 
where analytical solutions are known [17,20]). 

2.0 

1.5 
( . I  

~ 1 . 0  

0.5 

0.0 

5O 

40 

/ 3O 

20 

10 

0 

I I 

(a) AT=O 

0.7 

09,1 

0 

(b) AT=O. 1T c (c) ideal gas 

, . . . . ' , . .  

1.1 0.7 

- 0 . 5 - ~  

0.9 

~ . I I I 

10 20 0 10 20 0 10 20 
zlL zIL 

Fig. 12: Expansion in the Landau model for AT = 0 (a,d), A T  = 0.1To (b,e), and 
the ideal gas equation of state (c,f). (a-c) show temperature profiles for different 
times, (d-f) show the corresponding isotherms in the t - z plane (numbers are 
temperatures in units of Te). The initial energy density is E0 = 1.875 T e s t  in all 
cases. 

In Fig. 12 numerical solutions for the Landau model are presented for the 
three different equations of state of Fig. 8. The initial energy density is e0 = 
1.875Test which is slightly larger than EQ. In Figs. 12 (a-c) tempera ture  
profiles are shown for different times t and for the z > 0 half plane (the 
solution in the other half plane is the respective mirror image). For A T  = 0, 
Fig. 12 (a), one clearly observes the rarefaction shock wave which, for this 
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initial energy density is almost stationary. Hadronic matter is expelled from 
the shock until the energy in the interior of the slab decreases below eH and 
the shock vanishes. For AT = 0.1 T¢, Fig. 12 (b), no shock is formed, although 
the variation of the velocity of sound in the mixed phase, Fig. 8 (d), leads 
to shapes for the continuous rarefaction waves which differ strongly from 
those for a constant velocity of sound, Fig. 12 (c). Note the kink in the 
temperature profiles in the latter case which indicate the position where the 
Landau solution matches to the Riemann rarefaction wave. Note also the 
difference in the initial temperatures for the three cases although the initial 
energy density is the same. This is a consequence of the different number of 
degrees of freedom for the three equations of state at high energy densities. 

In Figs. 12 (d-f) corresponding isotherms are shown in the t - z plane. 
The most pronounced feature is that due to the small propagation velocity 
of the rarefaction wave, the system stays hot for a much longer time span 
for the AT = 0 equation of state, Fig. 12 (d), than for the ideal gas, Fig. 
12 if). This is in agreement with the general argument presented earlier that  
the softening of the equation of state in the mixed phase region leads to a 
reduced expansion tendency and thus to a "stalled" expansion of the system. 
The softening of the equation of state is also the reason why the expansion for 
the AT ---- 0.1 Tc equation of state, Fig. 12 (e), is delayed in comparison to the 
ideal gas case, although no rarefaction waves are formed. For a quantitative 
analysis of the delayed expansion in the Landau model see [23]. 

4.5 The Bjorken Model  

One of the main assumptions of Landau's model is that the initial collective 
velocity of the slab of excited matter vanishes. However, this cannot be quite 
true on account of the following argument. In the limit v -~ 1, the size of 
the nuclei in longitudinal direction goes to zero, and there is no scale in the 
problem at all. In this case, the collective velocity of matter in the slab has 
to be of the scaling form v -- z / t .  The consequences of this special form for 
the longitudinal fluid velocity were first investigated in [26,27], again with 
respect to possible applications in hadron-hadron collisions. Bjorken [28] was 
the first to discuss it in the framework of nuclear collisions. 

The main ideas of the so-called Bjorken  model  are summarized in Fig. 
13. As in the Landau model, two ultrarelativistic, Lorentz-contracted nuclei 
collide at z -- 0 and t -- 0 (the moment of complete overlap) in the center 
of mass frame of the collision. Due to the limited amount of nuclear stop- 
ping power, the baryon charges keep on moving along the light cone, while 
microscopic collision processes (the nature of which is of no concern for the 
following) lead to the formation of a region of highly excited, net charge free 
matter in the wake of the nuclei. In contrast to the Landau model, however, 
the collective velocity in this region is of the scaling form v = z / t .  The region 
of highly excited matter is supposed to rapidly equilibrate locally within a 
time span v0 (which is of the order of a fm or less), and the further evolution 
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of the  sys tem can be described in terms of ideal fluid dynamics.  One impor-  
t an t  point is that ,  due to the absence of a scale, physics has to be the  same 
for ma t t e r  at  different longitudinal coordinate z if compared  at  the same 
proper t ime v = t x / T ~ v  - y  = ~ .  (Such curves of constant  r describe 
hyperbo la  in space-time.) Thus, the initial the rmodynamic  s ta te  of all fluid 
elements is the same at  the same proper t ime vo. 
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Fig. 13: The Bjorken model for nuclear collisions. See text for details. 
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If the longitudinal velocity profile is enforced by the scaling argument,  the 
fluid-dynamical solution simplifies in fact considerably. To see this, change 
the variables t, z in the conservation laws for one-dimensional longitudinal 
motion in the absence of conserved charges, 

OfT  °° + Oz T z° = O , O f T  °z + Oz T zz = O , (112) 

to the variables v -- v / ~ ' U z  --~, which is the proper time of a fluid element, 
and y -- Ar tanhv = Artanh[z / t] ,  which is the rapidity of a fluid element. 
Then, the coupled system of partial differential equations (112) decouples: 

0_.~] +e+p__ = 0 ,  (113) 
O T }  T 

1" 

The second equation (114) has the interesting consequence tha t  there is no 
pressure gradient between adjacent fluid elements (the one at ~ and the one at 
rl + d~). At first glance this would seem to indicate that  there is no expansion 
of the fluid at  all. This, however, is not true, since the fluid velocity is certainly 
finite, v = z / t .  The answer is that  the new coordinates (r, r/) already take 
the scaling expansion into account: a fluid element at I"/with a width Ar I in 
fact "grows" in longitudinal direction by an amount dz = dt Arl during the 
time span d t .  

Another consequence of (114) is derived from the Gibbs-Duhem relation: 

1 t Op OT + ~ n i  -----0 . (115) 

This equation means that  for vanishing conserved charges ni = 0, i = 
1 , . . .  ,n ,  the temperature has to be constant along curves of constant T, 
i.e., along the space-time hyperbola shown in Fig. 13 (y varies along these 
curves). In the general case of non-zero net charges, however, only the par- 
ticular combination of charge densities, entropy density, and derivatives of 
T and the jui appearing in (115) has to vanish along curves of constant v. 
Equation (114) represents the principle of "boost invariance" commonly as- 
sociated with the Bjorken model: at constant v the pressure is independent 
of the longitudinal rapidity, i.e., it is the same in fluid elements with different 
~/, or in other words, it does not change if one performs a longitudinal boost 
to a different reference frame. This is a consequence of the scaling form for 
the longitudinal velocity. 

Equation (113) also has an interesting consequence. With the first law of 
thermodynamics, one derives as usual the conservation of the entropy current 
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which now takes the form 

658 -t- s 
- - -  0 , ( 1 1 6 )  

F r r  r 

which can be immediately integrated to give 

s v = s0v0 = const. (117) 

a t  constant  ~. The  constant  may in principle differ for different ~, but  since 
the initial the rmodynamic  s tate  along v0 was the same for all ~, t ha t  constant  
will also be the same for all ~ at  other ~" > v0. Equat ion (117) is interesting 
because it tells us tha t  the entropy density decreases inversely propor t iona l  
to  v independent of the equation o.f state of the fluid. The  t ime evolution for 
energy density, pressure, or t empera tu re  might  depend on the  equat ion of 
s tate,  but  not the one for the entropy density. 
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sure, and (d) temperature in the Bjorken model for nuclear collisions (longitudinal 
expansion only). Solid line: AT = 0, dotted line: AT = 0.1T¢, dashed line: ideal 
gas equation of state. The initial energy density is eo = 10Test. 
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This is confirmed in Fig. 14, where the evolution of (a) the energy density, 
(b) the entropy density, (c) the pressure, and (d) the tempera ture  is shown 
as a function of proper time 7- for the three equations of state (AT ----- 0, 
A T  ---- 0.1 To, and the ideal hadron gas). Note that  in the quark-gluon as well 
as the hadron phase, where p ~ ~ e with ~ = 1/3, Eq. (113) yields 

e ' ~  7 " - 4 1 3  , (118) 

For the AT  = 0 equation of state, p ---- Pc = const, in the mixed phase, and 
(113) yields the cooling law 

e ,~ 7--1 (119) 

This is interpreted as follows. The longitudinal scaling expansion dilutes the 
system ,., 7--1. If no mechanical work is performed, like in the mixed phase 
where dp - 0, only this geometrical dilution determines the (proper) t ime 
evolution of the energy density. In the phase where dp = ~ de, however, 
additional mechanical work is performed, and the system cools faster, e 
7--(1+c. 2) __ 7--4/3. The faster cooling is confirmed studying the tempera ture  
evolution, Fig. 14 (d). For p = ~ e, ~ -- const., and vanishing net charges, 
one deduces from dp = ~ d e  = s d T  = (e +p )  d T / T  = (1 + ~ ) e d T / T ,  tha t  
e ,~ T 1+c:2 and consequently, in the hadron and quark-gluon phase 

T ~ 7--1/3 , (120) 

while in the mixed phase one deduces from dp -- s dT  -- 0 tha t  

T = c o n s t . .  (121) 

This expectation is confirmed in Fig. 14 (d). 
Of course, in reality the expansion of the system will not only be purely 

longitudinal. The  "Bjorken cylinder" will also expand transversally. The prin- 
ciple of boost  invariance allows us to focus on the transverse expansion at 
z -- ~/-- 0 only, and reconstruct the fluid properties at  a different 77 by per- 
forming a longitudinal boost with boost rapidity ~/. For the sake of simplicity, 
let us assume tha t  the system is cylindrically symmetric in the transverse di- 
rection and tha t  the initial energy density profile is of the form 

eCr, 7-o,n = 0 )  = e C R  - Ir l )  , (122) 

where R is the transverse radius of the Bjorken cylinder. In cylindrical coor- 
dinates and at z -- ~/-- 0, the conservation equations read (T oo _-- E ,  T °r - 
M, vr = v): 
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Although these equations have no longer a simple analytical solution, the as- 
sumption of cylindrical symmetry has reduced the originally three-dimensio- 
nal problem to an effectively one-dimensional problem. Indeed, for vanishing 
right-hand sides the solution of (123), (124) with the initial condition (122) 
is identical to the one of the Landau model with the substitutions z -~ r and 
L ~ R. The right-hand sides just lead to an additional reduction of E and 
M from the cylindrical geometry, v/r,  and from longitudinal scaling, 1/t. 

This observation, combined with the method of operator splitting dis- 
cussed previously, suggests the following simple solution scheme (also known 
as Sod's method [16,29]): equations (123), (124) are of the type 

ot u + F ( V )  = - G ( U )  . (125) 

The operator splitting method allows to construct the solution by first solving 
the one-dimensional partial differential equation 

Ot U + O, F(U) -- 0 , (126) 

(for instance with the relativistic HLLE scheme discussed above), which yields 
a prediction 0 for the true solution U. In a second step one corrects this 
prediction by solving the ordinary differential equation 

dU 
- G ( U )  , (127) 

dt 

which is numerically realized as [30] 

u = 0 - At G ( O ) .  (128) 

The transverse expansion of the Bjorken cylinder at z = 0 is shown in Fig. 
15 for To -- 0.1 R and e0 = 18.75 Test. One immediately recognizes the quali- 
tative similarities with the Landau expansion, like the delay in the expansion 
for the two equations of state with a (phase) transition as compared to the 
expansion with an ideal hadron gas equation of state. The additional ge- 
ometricai dilution, however, leads in general to a faster cooling overall and 
quantitatively different shapes for the temperature profiles and the isotherms 
in the t - r plane. 

Let us further quantify the time delay in the expansion induced by the 
transition in the equation of state. In general, the system will decouple into 
free-streaming particles once the temperature drops below a certain "freeze- 
out" temperature Tfo, see Section 5 below. From comparison with experimen- 
tal data, this freeze-out temperature is estimated to be on the order of 100 
MeV. Let us therefore define a "lifetime" of the system as the time when 
the T = 0.7 Te isotherm crosses the origin at r = 0 in Figs. 15 (d-f). This 
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Fig. 15: Transverse expansion of the Bjorken cylinder for AT ---- 0 (a,d), AT ---- 0.1 T¢ 
(b,e), and the ideal gas equation of state (c,f). (a-c) show temperature profiles for 
different times, (d-f) show the corresponding isotherms in the t - r plane (numbers 
axe temperatures in units of To). The initial energy density is e0 = 18.75 Tcs¢ in all 
c a s e s .  

lifetime is shown in Figs. 16 (a,b) as function of the initial energy density 
e0 of the cylinder. One observes a maximum of the such defined lifetime at  
initial energy densities around 40 Tcsc "~ 30 GeVfm -a.  At these initial energy 
densities, the prolongation of the lifetime over the respective ideal hadron 
gas value is about  a factor of 2 (for AT  ---- 0.1 Tc) to  3 (for AT = 0). 

The  prolongation of the lifetime is due to the softening of the equation 
of state in the phase transition region. It is, however, interesting tha t  the 
maximum in the lifetime does not occur around initial energy densities cor- 
responding to eQ (as is the case in the Landau model [23]), but  at much larger 
initial energy densities. The reason for this is the strong longitudinal dilution 
of the system on account of the scaling profile vz = z / t .  In order to  see a large 
effect of the softening of the equation of state in the phase transit ion region 
on the expansion dynamics, the transverse (Landau-like) expansion has to  be 
the dominant  cooling mechanism for the system. The Bjorken scaling expan- 
sion does not account for the reduced expansion tendency of the system in 
the transit ion region, it enforces  an  expansion velocity v= = z / t  irrespective 
of the equation of state. In order to have the transverse expansion dominate  
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the cooling of the system, one has to start the expansion at higher initial en- 
ergy densities such that the system spends enough time in the mixed phase 
for the (slow) rarefaction shock to reach the origin. The initial energy density 
in Fig. 15 was intentionally selected to maximize this effect. 

Initial energy densities on the order of 10 - 30 GeVfm -3 are expected 
to be reached at the RHIC collider. In order to experimentally observe the 
prolongation of the lifetime as seen in Figs. 16, one has to find a corresponding 
experimental observable. An obvious candidate is the ratio of the "out" to 
the "side" radius of two-particle correlation functions. The "out" radius is 
proportional to the duration of particle emission from a source, while the 
"side" radius is proportional to the transverse dimension of the source (cf. 
[31] for a very detailed, pedagogical discussion). Since the transverse radius 
of the source is approximately the same in all cases, cf. Fig. 15 (a-c), the ratio 
Rout/Rslde seems to be a good generic measure for the lifetime. Moreover, 
in forming the ratio the dependence on the overall (unknown) spatial size 
of the source as well as effects from the collective expansion are expected 
to cancel. The ratio Rout/Rside is plotted in Figs. 16 (c,d) for pions with 
mean transverse momenta K z  = 300 MeV. (Details on how to compute this 
quantity can be found in [30,32].) As one observes, Rout/Rslde nicely reflects 
the excitation function of the lifetime of the system. 

5 F r e e z e - O u t  

In this section I discuss an up to date unsolved problem in the application of 
relativistic fluid dynamics to describe nuclear collisions, namely the so-called 
"freeze-out" process. Given an initial condition, fluid dynamics describes the 
evolution of the system in the whole forward lightcone, Fig. 17 (a). However, 
as we have seen above, at all times near the boundary to the vacuum, as 
well as everywhere in the late stage of the evolution, the energy density 
becomes arbitrarily small, i.e., the system is rather cold and dilute. In this 
space-time region the assumption of local thermodynamical equilibrium is 
no longer justified, because the particle scattering cross section a is finite, 
such that for small particle densities n the particle scattering rate, T' ,~ a n ,  

becomes on the order of the inverse system size, -!" ,-, R -1. At this point, the 
scattering rate is too small to maintain local thermodynamical equilibrium 
and the particles decouple from the fluid evolution. In this space-time region, 
a kinetic description for the particle motion would be more appropriate. One 
should therefore not solve fluid-dynamical equations in the whole forward 
lightcone, but only inside a space-time region of sufficiently large energy and 
particle densities, while outside this region, the particle motion should be 
described by kinetic theory, Fig. 17 (b). 
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Fig. 17: (a) Conventional fluid-dynaznical description in the whole forward lightcone. 
(b) Fluid dynamics describes the evolution of the system inside V4, while kinetic 
theory describes the motion of the frozen-out particles outside V4. 
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The boundary E between the two regions is determined by a criterion 
which compares local scattering rates with the system size, as discussed 
above. The obvious difficulty with this more realistic description of the sys- 
tem's evolution is that this boundary has to be determined dynamically, i.e., 
not only has one to allow for particles decoupling from the fluid, but also 
for the reverse process of particles entering the fluid from the kinetic region. 
(This can happen since the particles still, albeit rarely, collide in the kinetic 
region.) A consistent treatment of this problem is rather complicated, since 
one has to solve kinetic in addition to the fluid-dynamical equations. No 
serious attempt has been made so far. 

Instead, the following approximate solution has been extensively em- 
ployed: 

1. One assumes that fluid dynamics gives a reasonable description for the 
evolution of the system in the whole forward lightcone. 

2. One determines the "decoupling" surface ~ a posteriori, once the evolu- 
tion of the fluid is known. 

3. The "thickness" of ,~ is assumed to be infinitesimal. 
4. One assumes that particles crossing E have completely decoupled from 

the system, they stream freely towards the detectors without any further 
collisional interaction ("freeze-out"). This means that they do not change 
their momentum and energy once they have crossed E. 

A very popular argument in order to determine ~ is the following. Since 
n ~ T 3, the scattering rate F ,-~ T 3 (for constant cross section a), i.e., if 
the temperature falls below a certain so-called "freeze-out" temperature Tfo, 
the criterion F ~ R is fulfilled, and particles decouple from the system. In 
this case, ~U is just given by the isotherm T = Tfo (use of this argument was 
already made above in the discussion of the "lifetime" of the system). 

Note that assumption 3. is a strong idealization and actually rather ques- 
tionable, because in reality ,U is a space-time region of finite thickness, inside 
which non-equilibrium, dissipative effects become gradually more and more 
important (the more dilute the fluid becomes), until ultimately all interac- 
tions between particles cease and, when leaving E, they stream freely towards 
the detectors. 

Nevertheless, with the above assumptions, one can readily compute the 
single inclusive spectra of particles reaching the detector. Immediately before 
the particles decouple from the fluid evolution, i.e., before they cross ,U, 
they are still in local thermodynamical equilibrium such that their phase 
space distribution is given by fo(k,x), Eq. (20). It is reasonable to assume 
that this phase space distribution is not changed much when they move a 
small distance along their worldlines, which carries them across E into the 
region of free-streaming. In that region, however, there are no collisions which 
could further change f0. Therefore, the phase space distribution of "frozen- 
out" particles is (approximately) the same as in local equilibrium. The total 
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number of particles crossing a small surface element dE  of E is then given 
by 

fd3k N E  -- d E u N Z  = j E d E .  k f o ( k , x )  , (129) 

N u being the (kinetic) particle number 4-current. The invariant m o m e n t u m  
spectrum of particles crossing that surface element is consequently 

dN~ 
E - ~  = d E .  k f o ( k , x )  . (130) 

Finally, the invariant momentum spectrum (the single inclusive spectrum) 
of particles crossing the complete "freeze-out" surface 27 is 

dN fr dNr fr E~ff-~ = E ~ -- d E .  k f o ( k , x )  . (131) 

This equation is known as the Cooper-Frye formula [26], and is used in almost 
all fluid-dynamical applications to heavy-ion collisions to compute the single 
inclusive spectra of particles. 

There is, however, a problem with this formula [33]. For time-like sur- 
faces, i.e., where the normal vector dEz is space-like, d E .  k may either be 
positive or negative, depending on the value and direction of k ~. In other 
words, the number of particles "freezing out" from a certain time-like surface 
element d27 can become negative. This is clearly unphysical, since the number 
of particles decoupling from the system must be positive definite. For space- 
like surfaces (with a time-like normal vector) as well as for time-like surface 
elements where dE-  k > 0, the Cooper-Frye formula gives a physically rea- 
sonable, positive definite result for the number of frozen-out particles. This is 
illustrated in Fig. 18 which shows the rapidity distribution of particles (i.e., 
the invariant momentum spectrum integrated over all transverse momenta) 
for massless particles decoupling from a freeze-out isotherm Tfo = 0.4 To in 
the Landau model with a p = e/3 equation of state. One clearly notices the 
negative particle numbers at midrapidity coming from the time-like parts of 
the isotherm. 

This contradiction is readily resolved noting that the Cooper-Frye formula 
does not really determine the number of particles decoupling from the sys- 
tem, but merely the number of particle worldlines crossing a surface element  
dE (and then integrated over the whole surface E). For time-like surface 
elements, there is of course the possibility that for certain k u the respective 
worldlines cross dE in the "wrong" direction, i.e., the momenta of the par- 
ticles point back into the region of fluid, cf. Fig. 19. In particular, for the 
Tfo = 0.4 To isotherm, which moves away from the t-axis in the t - z plane, 
those are particles with vanishing momentum component in z direction, be- 
cause their worldlines are parallel to the t-axis. Particles with pZ = 0, how- 
ever, also have vanishing longitudinal rapidity y = 0, and that is the reason 
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Fig. 18: The rapidity distribution for freeze-out along the Tfo = 0.4To isotherm in 
the Landau model. Solid: full distribution, dotted: particles fTom time-like paxts of 
the isotherm, dash-dotted: particles from space-like parts of the isotherm. 

why these negative particle numbers appear at midrapidity in Fig. 18. While 
this explains the negative contributions in the Cooper-Frye formula, it also 
invalidates this formula as the correct prescription to calculate the spectra of 
frozen-out particles, if parts of the decoupling surface are time-like. 

One suggestion to circumvent this problem was to compute the final spec- 
tra only from contribution of particles which cross the space-like parts of ~.  
Of course, as can be seen by comparing the dash-dotted with the solid line 
in Fig. 18, the final spectra are dramatically different. Moreover, by neglect- 
ing particles crossing the time-like parts, the absolute number of frozen-out 
particles will also differ in the two cases. Note that the dN/dy distribution 
for particles from the space-like parts of the decoupling isotherm has a Gaus- 
sian shape in the Landau model. This was already pointed out in Landau's 
original paper [25] and has since survived as the generic (but wrong) state- 
ment that Landau's model gives rise to Gaussian rapidity distributions. In 
fact, there is no decoupling temperature where the full rapidity distribution 
including particles from the time-like parts resembles a Gaussian, cf. Fig. 20. 
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Z 

Fig. 19: Explanation for the negative number of frozen-out particles in the Cooper- 
Frye formula. 

Another suggestion to circumvent the problem of negative particle numbers 
is, instead of freezing out along an isotherm which has time-like parts, to 
freeze out along a surface which is space-like everywhere, for instance, a 
curve of constant time in the center-of-mass frame, cf. Fig. 21. In this case, 
all particles are accounted for, since the decoupling surface is bounded by 
the lightcone, and no particle can escape through the lightcone. The problem 
is, that also in this case, the spectra differ considerably from a freeze-out at 
constant temperature, cf. Fig. 22. This uncertainty is clearly unwanted when 
one wants to quantitatively compare fluid-dynamical model predictions with 
experimental data. 

The correct formula to compute the number of particles which physically 
decouple from the system was given in [33]: 

E dN~ =/Ed.,U. kfo(k,x) O(d,U. k) . (132) 

The additional O-function ensures that negative contributions to the Cooper- 
Frye formula are cut off. The problem with this formula is that these negative 
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Fig. 21: A curve of constant time in the center-of-mass flame as freeze-out isotherm. 
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Fig. 22: The rapidity distribution for freeze-out along curves of constant time in 
the center-of-mass frame defined by requiring the average temperature to be (T) ---- 
0.8 To (solid), 0.6 T0 (dashed), 0.4 To (dash-dotted), and 0.2 To (long dashed) in the 
Landau model with a p -- e/3 equation of state. 

contributions were necessary to globally conserve energy, momentum and net 
charge number, cf. the derivation of the conservation equations in Section 
2. The  violation of the conservation equations introduced by the freeze-out 
prescription (132) can, however, be circumvented by adjusting tempera ture ,  
chemical potential,  and the average particle 4-velocity in the single-particle 
distribution function f0(k, x) in (132) in such a way as to preserve the con- 
servation laws. In other words, one must not use temperature,  chemical po- 
tential,  and fluid 4-velocity on the fluid side of the freeze-out surface in (132), 
but  modified values which ensure that  energy, momentum, and net charge is 
conserved. One way to achieve this is to assume that  the freeze-out surface 
actually is a conventional fluid-dynamical discontinuity across which energy, 
momentum, and net charge number are conserved. Solving the correspond- 
ing algebraic conservation equations (with energy-momentum tensor and net 
charge current on the post freeze-out side of the discontinuity constructed 
from (21,22) with fo(k, x) replaced by fo(k, x) {9(dE • k)) yields the required 
modified values for temperature,  chemical potential, and average particle 4- 
velocity on the post freeze-out side. For more details, see [33,34]. However, it 
still remains to  be shown with an exp:icit calculation whether this suggestion 
to solve the freeze-out problem is viable in the general case. 
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The  Use  of Statistical Mechanics  to Descr ibe  
Hadron Product ion  in High Energy Collisions 
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Abstract. In these lecture notes the application of statistical mechanics to describe 
hadron production in high energy collisions is reviewed. Special emphasis is given 
to the necessary assumptions and to point out what can be and what cannot be 
predicted within this framework. The present status of data analysis is summarized 
and future tests of the model are outlined; some critical points are addressed. 

1 I n t r o d u c t i o n  

The use of statistical mechanics (and thermodynamics) to describe hadron 
production in pp collisions dates back to the '50s and '60s [1]. Since then 
much work has been done in this field and various models have been pro- 
posed for different kinds of collisions, especially heavy ion collisions as they 
have been considered for a long time the most natural place where hadron 
thermalisation could actually take place. In this paper I will show that  there 
is evidence that a statistical description of hadronisation works for a large 
set of collisions, from e+e-to heavy ions, and that definite universal features 
emerge in the analysis of elementary collisions with respect to the more com- 
plex heavy ion collisions. A special feature of this approach is the very small 
number of free parameters needed to reproduce key observables in hadroni- 
sation such as the overall particle multiplicities. Moreover, well known facts 
like baryon to meson suppression naturally arise, with no extra assumption, 
owing to the interplay between baryon number conservation and the gener- 
ally heavier baryon masses. This peculiarity of the statistical-mechanical ap- 
proach is to be compared, for instance, with the popular Monte-Carlo codes 
used in high energy physics based on implementations of string models, e.g. 
in e+e-collisions [2], which require many more free parameters to reproduce 
the yields of hadron species. It should be emphasized in advance that  the 
statistical-thermodynamical model alone, in principle, is unable to describe 
either hadron momentum spectra in high energy elementary collisions, for 
they are mainly determined by the early perturbative QCD dynamical evo- 
lution, or special correlations (e.g. rapidity vs baryon number) unless it is 
supplemented with further dynamical input. Its predictive capabilities are 
concerned with global observables, such as particle species multiplicities and 
correlations, for which the hadronisation process is almost entirely responsi- 
ble. It is in fact one of the aims of this work to show that  those major observ- 
ables can be made independent of involved dynamical effects and analysed in 
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terms of a pure hadronisation model without using complicated schemes re- 
quiring the description of all aspects of hadron production (including spectra 
etc.) at one time. 

2 B a s i c s  o f  t h e  M o d e l  

The basic assumption of the model is the existence of a set of hadron gas 
clusters or fireballs 1 as the final result of a high energy collision. Every cluster 
has a momentum Pi  and a spacial volume 1~ defined in its rest frame as well 
a mass Mi and a set of quantum numbers Q0 = (Qi, Ni, Si, Ci, Bi) where 
Qi is the electric charge, Ni is the baryon number, Si is the strangeness, 
Ci is the charm and Bi is the beauty. It should be pointed out that  the 
assumption of a hadron gas in each cluster does not entail that hadrons 
thermalised via inelastic collisions within the volume Vi, rather that pre- 
hadronic matter converted into hadrons according to the equiprobability of 
any multi-hadronic phase space state (Gibbs postulate) where phase space 
is locally defined by the mass and the rest frame volume of the cluster. This 
is a necessary statement as the emitting source in elementary collisions is 
believed to be rapidly expanding, thus not allowing thermalisation of a non- 
equilibrated hadron system; in other words hadrons must be created already 
at chemical equilibrium [3,4] (except strange hadrons, see Sect. 4). 
In order to derive physical observables we start by calculating the canonical 
partition function of each cluster: 

Z(Ti, Vi, Q?) = E exp(-E/Ti) 6q,qo , (1) 
s t a t e s  

where the sum runs over all multihadronic states (n)  defined by a set of 
occupation numbers n~ for each species j and for each phase space cell k. 
The partition function is a Lorentz-invariant one, hence it can be computed 
in any reference frame; for sake of simplicity we have chosen the cluster rest 
frame in eq. (1). The Z(Ti, Vi, QO) can be worked out by transforming the 
Kronecker 5Q,Q? into an integration: 

1 f f  Z(Ti, Vi, Q°)= ~ - ~  dSCe IQ°'~b EHexp[-n~(e~/Ti+iq.i.d?)]. (2) 

It can be proved that the average multiplicity of the jtahadron species in 
the ithcluster can now be obtained by multiplying all the exponential factors 
exp [ - e~ /T / -  iq j .  ~b] associated to the jthhadron in eq. (2) by a factor •i, 
then taking the derivative of Z with respect to )~j for ~j -- 1 and dividing by 
Z itself: 

1 The words cluster and fireball will be used as synonyms throughout 
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1 0 0 
< nj > i=  Z(Ti, V~, q0)  0~j Z(Ti, V~, Qi, Aj) xi=l" (3) 

Similarly, the number of particle k-uples can be obtained by taking the higher- 
order derivatives of Z with respect to similarly defined ,k parameters and 
dividing by Z [3]. 
In order to derive the overall average multiplicities, the numbers obtained 
from eq. (3) for each cluster must be summed up. However, the temperatures, 
the quantum number vectors, the volumes of the clusters, as well as their num- 
ber N,  may fluctuate on an event by event basis, so that the hadron average 
multiplicities for a given configuration {(T1, VI, Q0) , . . . ,  (TN, V~, QO)} must 
be folded with their probabilities of occurrence in order to get the actual ob- 
servable multiplicities. 
As a first step, let us assume that all clusters in an event have the same 
temperature T and let us group the events having the same set of values 
(T, V, N) and V = ~-]~N= i Vi is the sum of all cluster rest frame volumes; the 
quantum vector QO = y~N=l Q0 is fixed because it is determined by the initial 
colliding system. Then, let us define as w(Q° , . . . ,  QO) the conditional prob- 
ability of occurrence of a given configuration (QO,. . . ,  QO) with fixed set of 
volumes (V1,... ,  VN) and fixed (V,N). Let f(V1,. . .  ,V j v) be the conditional 
probability of having a set of volumes (111,..., VN) with fixed V = ~N=I V~ 
and let p(V, N) be the probability of occurrence of a pair (V, N). Hence: 

oo N 

N 

X ~ W 0 ( q l , - . . , Q ° )  < nj >,  
(Qo ..... qo) ~=1 

(4) 

The functions ] ,  w and p are in general unknown. A statistical ansatz is taken 
for w, namely w(Q° , . . . ,  QO) is assumed to be the probability of subdividing 
a global cluster of temperature T, volume V and quantum number vector QO 
into N clusters with a configuration (QO,.. . ,  QO). Hence, this probability is 
simply proportional to the number of states contained in the configuration 
(Q•,. . . ,  Q~¢), namely: 

w(Q? , . . . ,  Q~v) = y[~v=l Z(T, ~, Q0.) (5) 
~(q~ ..... q~) l-I~V=l Z(T, I~, QO) 

With this ansatz, the sum over all configurations (Q0, . . . ,  QO) in the inte- 
grand of eq. (4) becomes the average multiplicity of the jthhadron in one sin- 
gle fireball of volume V, temperature T and quantum number vector QO. As 
this quantity depends no longer on the particular set of volumes (V1,.. •, VN) 
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but  only on their sum ~-~=1 Vi - V [3] neither on the number of clusters N,  
while QO is fixed by the initial colliding system, the final expression of the 
average multiplicity turns out to be: 

<< nj >>= / dT f dV a(T, V) < nj > (T, V, Q0) ,  (6) 

where o'(T, V) = ~"~N°°=I p(T, V, N) and < nj > (T, V, Q0) can be obtained by 
taking the derivative of the canonical partition function of the whole fireball: 

1 0 .Z(T,V, QO,Aj ) ~,j=l < nj > (T, V, q0) = Z(T, V, q0) 0Aj (7) 

It should be stressed that  the single fireball with volume V does not actually 
exist in any of the physical collision events. What  is assumed to exist in the 
physical reality is a set of clusters having different momenta. The single large 
cluster is only a useful mathematical object whose mathematical existence is 
owed to the particular choice of the w's probabilities. 
If the cluster masses are not large, then their canonical parti t ion function 
must be replaced with microcanonical ones. This makes calculations more in- 
volved but a useful generalisation could be achieved. The possibility of cluster 
masses fluctuations should be taken into account and one could hopefully end 
up, by choosing suitable mass fluctuation functions like w in eq. (5), with the 
microcanonical partition function of a single large fireball as in the previous 
derivation. This subject is to be studied in more detail. 
For large masses M of the single fireball its microcanonical partit ion function 
can be tranformed into a canonical one by means of a saddle-point approxi- 
mation: 

Zlmicro -4 Z[can = ~ e-M/T~Q,QO 
s t a t e s  

(s) 

where the temperature T is related to M and V by the saddle-point equation: 

0 
M + ~ log Zlea, = 0 .  (9) 

U t l l .  ] 

Anticipating some of the results described in next section, this approximation 
is indeed possible for all of the elementary collisions examined so far [5,6,3]. 
In Table 1 a compilation of mean M estimated by using eq. (9) and the fitted 
T, V and ~/s (see Sect. 4) are compared with the fitted temperatures [6]; in all 
cases the mean masses turn out to be larger than the temperatures by at  least 
a factor 45, thus justifying the use of the canonical formalism. However, an 
accurate quantitative estimation of microcanonical corrections is still lacking 
and it would be valuable to have it in the future. 
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Table 1: Values of fitted temperatures and estimated mean fireball masses in various 
high energy collisions 

v ~  (GeV) T (MeV) < M > (GeV) 

pp collisions 

19.5 190.8 4- 27.4 8.65 

23.8 194.4 4- 17.3 9.82 

26.0 159.0 4- 9.5 9.57 

27.5 169.0 4- 2.1 9.77 

p~ collisions 

200 175.4 4- 14.8 22.55 

546 181.7 4- 17.7 31.73 

900 170.2 4- 11.8 36.83 

e+e - collisions I 

29 - 30 163.6 4- 3.6 10.21 

34 ÷ 35 165.2 4- 4.4 10.69 

42.6 ÷ 44 169.6 4- 9.5 11.89 

91.2 160.6 4- 1.7 17.49 

1 - The mean masses quoted for e+e - collisions are those 

estimated for light quark events 

3 A B r i e f  S u m m a r y  o f  t h e  A n a l y s i s  

o f  H a d r o n  M u l t i p l i c i t i e s  

Aside from the thermodynamical  parameters  T and V the remaining degrees 
of freedom reside into possible fluctuations of T and V. If  such f luctuat ions 
are small, as it is taci t ly assumed in most  statistical analyses, they can be 
neglected and a mean value for T and V is taken. In some cases (e.g. refs. 
[3,7]) the fluctuations of V have been discussed though the actual  fit to the 
da ta  was performed with mean values. 
The  canonical t r ea tment  in statistical mechanics involves the requirement  
of exact conservation of internal quantities such as the quan tum numbers  
which have been mentioned at  the beginning of the previous section. The  
calculations of part i t ion function within the most  general conservation laws 
related to symmet ry  groups is a well-known subject [8]. By imposing our 
quantum number  conservation laws associated to simple U(1) groups, we get 
expressions of observable quantities, in particular hadron multiplicities, dif- 
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fering from the usual grand-canonical thermodynamics by so-called chemical 
factors, which are ratios Z(Q a - q / ) /Z (Q  °) of the single-fireball partition 
function evaluated for two different quantum vectors [6,3]: 

o o  Z ( Q  ° - nq./) (10) < <  n . / > >  ~(=1=1) n+' "'~ = % z j ( . )  Z ( Q 0 )  ' 

where the sign - is for fermions and + for bosons. The functions zj(, 0 are 
defined as: 

zj(n)--(2Jj+l)~V/d~ p 
VT 2 nmj 

(2J  + 1) 2-W n mj g 2 ( - y - )  • 

+ m l / r ) =  

(1:) 

where Jj is the spin, mj the mass, qj the quantum number vector of the 
jthhadron; the O's factor will be discussed in the next section. For T of the 
order of 200 MeV only the first term of the above series, corresponding to 
Boltzmann statistics, can be kept for all hadrons except pions. The formulae 
(10),(11) yield the primary jthhadron multiplicity. In order to fit the free pa- 
rameters T, V and O's it is necessary to let all unstable (or strongly unstable) 
hadrons decay according to known branching ratios in order to match the 
experimental measurements. 
All details, discussion and results of the canonical analysis of hadron abun- 
dances in high energy (V~ > 19.4 GeV) pp, p~ and e+e-collisions can be 
found in refs. [6,3]. Here we just show two plots to demonstrate the good qual- 
ity of the fits (figs. 1, 2) and a summary plot of the obtained temperatures 
(fig. 3) including heavy ion collisions at SPS [7]. The apparent constancy of 
temperatures extracted in different kinds of collisions is an intriguing result 
indicating universality behaviour of hadronisation. Furthermore, a constant 
T suggests that hadronisation occurs at a particular value of local energy 
density (see also Sect. 7). 
For asymptotically large volumes (thus multiplicities) the chemical factors 
in eq. (10) reduce to the usual grand-canonical fugacities [3]. An example 
of this is shown in fig. 4 where the neutron chemical factor in a completely 
neutral hadron gas is plotted as a function of the volume [3]: it goes to 1 
only at asymptotically large volumes. The effect of the small volume on sta- 
tistical particle production (so called canonical suppression or enhancement) 
has been studied in great detail [9] and it is a very important effect in the 
analysis of elementary collisions [5,6,3]. Due to the large involved multiplici- 
ties, grand-canonical calculations naturally apply to heavy ion collisions [10]. 
In the actual fits, the introduction of one more free parameter, usually the 
baryon chemical potential, is required because the number of nucleons par- 
ticipating in the collision is not known a priori but has to be measured. 
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4 Strangeness Suppression 

The statistical model described above needs to be supplemented with an extra 
strangeness suppression factor, which is formally beyond a pure statistical 
hadronic phase space model, in order to reproduce experimental data. This 
suppression is implemented by a factor 7s which is introduced in the partition 
function as a fugacity related to the valence strange quark content of the 
hadron [12]. However, this way of regarding 7s apparently confines its validity 
to a grand-canonical framework. On the other hand, it is possible to define 
7s in a more general way which is independent of the adopted statistical 
formalism, i.e. microcanonical, canonical or grand-canonical. 
Indeed, for a certain multihadronic state n l , . . . , n K  (nl is the number of 
hadrons belonging to species 1, ..., nK is the number of hadrons belonging 
to species K) originating from the collision, its phase-space probability is 
multiplied by a factor 7s powered to the number of strange+antistrange 
quarks whose creation out of the vacuum is needed in order to set up that 
state; in other words, those which have to be newly produced and do not 
come from the colliding particles. Following this definition, in a canonical 
framework, the probability P of realizing a multihadronic state ( n l , . . . ,  nK) 
in a collision whose initial state does not have any strange quarks is: 

E K 
P oc exp(-E/T)  "Ys jr1 njlsjl (fQ,Qo , (12) 

where [s/[ is the number of valence strange+antistrange quarks contained in 
the jthhadron. This probability can be worked out to calculate the canonical 
partition function, eventually yielding: 

1/ 
Z ( Q  O) - (27r)5 dS~b eiQ°-~ b 

(2Jj + 1) f 3 x exp[V ~ .  0--~3- ] d p log(1 + 7SJe- P~-~-~/Ti--iqj'¢)=t=l] . (13) 

3 

which is exactly the same partition function [6,3] obtained by introducing 
7s as a fugacity. The definition in eq. (12) can be easily generalized within 
the microcanonical or grand-canonical framework. Furthermore, it should 
be emphasized that this definition is more general and more appropriate for 
collisions with initial strange quarks (for instance K p) in which the use of the 
same parition function (13) obtained for colliding systems devoid of valence 
strange quarks would lead to odd results. In this special case, the probability 
(12) becomes: 

P c(exp(-E/T)  7s ~ = 1  -jl,j[-Isl ~Q,QO , (14) 

where ]S[ is the initial absolute strangeness, so that the canonical partition 
function will differ by a factor 1/TIs sl from the (13). As already mentioned, 
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in actual analyses of hadron multiplicities, Vs is a free parameter besides V 
and T. However, there are considerable clues [7,13] that */s is not the most 
appropriate quantity to parametrise strangeness suppression because it turns 
out to be different in e+e , p~ and pp collisions (see fig. 5). On the contrary, 
the universality of hadronisation in those collisions in the strangeness sec- 
tor shows up when plotting the best estimate of the ratio As between newly 
produced s~ pairs and half the sum of newly produced ufi and dd pairs (see 
fig. 6) which has a pretty constant value of about 0.2. The model predictions 
about primary production rate of hadrons allow to make such a valence quark 
counting before strong decays take place. This result suggests that hadroni- 
sation in all kinds of elementary collisions works in a such a way that the 
average number of strange quarks picked from the vacuum is in a constant 
ratio with u or d quarks. Even more interesting is the fact that As is definitely 
higher in heavy ion collisions at SPS energies by a almost factor 2 whereas 7s 
has nearly the same value as in e+e-collisions. This gap is a clear indication 
that  something different happens in heavy ion collisions as far as strangeness 
production is concerned. 
The constancy of As in elementary collisions indicates that the best way of 
parametrizing strangeness suppression would amount to fix the mean ab- 
solute value of strangeness with possible superimposed fluctuations. The 
mathematical translation of this idea requires the extension of the demanded 
conservation laws from 5 (Q,N,S,C,B) to 6 (Q,N,S,C,B, ISI), and, conse- 
quently, the extension of the integration from 5-dimensional to 6-dimensional 
in eq. (13) in order to calculate the partition functions needed to evaluate 
chemical factors in eq. (10). The actual calculation would be even more in- 
volved because the absolute value of strangeness certainly undergoes fluctu- 
ations event by event, so that the number of integrals to be computed would 
turn out to be very large. The implementation of this new kind of calculation 
is a point deserving detailed investigation, especially because it might lead to 
a further qualitative improvement of thermal canonical fits. Furthermore, it 
would be instructive to understand to what extent 7s acts anyhow as a good 
parametrisation of strangeness suppression though less fundamental than As. 

5 Multiplicity Distributions 

Not only hadron species average multiplicities but also the probability of 
having k-uples of different hadrons and, as a consequence, multiplicity dis- 
tributions, can be reduced to a folding integral like in eq. (6) where the set 
of clusters is replaced by a single fireball. To prove that, an argument can be 
used which is similar to that used for the average multiplicities; for a fixed 
configuration (Q0, . . . ,  q o ) ,  volumes (V1,..., VN), number of clusters N, the 
conditional probability Pc of getting a k-uple {n~,...  ,nK} is given by : 
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K lf dAJ .l~ i o Zi( Vi' Qi , )~1, . . . , )~K ) 
Pc({n l , . . . , nK})  = ( H  ~ ~ )  ~ ,  ~-~-~ , (15) 

j=l 
where the Aj are the factors defined in Sect. 2. This expression follows from 
a very general statement about generating functions and from the chain of 
equations: 

= 

Z (Z P(state)[fixed{ nl ..... nKI)A~' " " " A~< K= 
{nl ..... nK) s t a t e s  

P( ate) r 1 = 
s t a t e s  

N 

H Zi (V/, QO, A1,..., AK)/Zi (V/, QO) (16) 
i ~ l  

N implying that I-Ii=1 Zi(Vi, o Qi, A1,..., AK)/Zi(V/, QO) is indeed the generat- 
ing function of the distribution Pc. Hence, the observable multihadronic prob- 
ability distribution P({nx,. . . ,  nK}) will be the convolution: 

c o  N 

P ( { n l '  " " " ' n K } )  : N=IZ fdTfdVp(T,V,N)(HllfdV')= ,(y,,...,vN) 
× Z o o • , QN)pc(Qx,... ' QO). (17) 

(Q0 ..... Qo) 

By using eq. (15) and the probabilities (5) the sum over all configurations 
becomes the multiple integral of the single fireball generating function: 

P ( { n ~ , . . . , n K } ) =  f dT f dV a(T ,V)  

~: 1 
x (j__i~i1 ~._~i / ~)dAJ .Z(V,Q°,]kI,...,&K)~ 0~I (18) 

This proof can be repeated in the canonical framework as well. 
To summarize, in order to study not only average multiplicities but also all 
global correlations (i.e. independent of momenta) among particles at any or- 
der, the use of a single cluster having mass, volume and quantum numbers 
equal to the sum of masses, volumes and quantum numbers of the produced 
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clusters is still valid, provided that the probabilities w's are assumed to be 
those in eq. (5). Even with this simplifying assumption, multiplicity distribu- 
tions are affected by possible fluctuations of T and V. For fixed T and V the 
fluctuations of single hadron species are not independent of other species due 
to conservation laws. Only in the high multiplicity regime, where conservation 
laws are weakened, hadron multiplicity distribution become poissonian. In ref. 
[14] a study of charged particle multiplicity distributions in e+e-collisions has 
been performed with the statistical-thermodynamical model by neglecting V 
or T fluctuations. A fairly good agreement has been found with the data 
though some discrepancy emerged suggesting that the fixed V approxima- 
tion is not fully satisfactory. 

6 H e a v y  F l a v o u r s  a n d  S p e c t r a  

The statistical-thermal model gives rise to some other predictions concern- 
ing various physical observables. One prediction which turned out to be in 
striking agreement with the data is the relative abundance of heavy flavoured 
hadrons [15] in e+e-collisions (see Table 2). In order to produce statistical- 
thermal predictions of heavy flavoured hadron production rates it is necessary 
to assume that primarily created heavy quark pairs (like in Z boson decay) do 
not reannihilate and appear as open flavours in the final hadrons, according 
to experimental observations. This amounts to a modification of the partition 
function in a fraction of events whose value is used as input. Specifically, in 
e+e - --~ bb events, the canonical partition function is taken to be [3]: 

Z = ZI(Q °) - Z2(Q °, IBI = 0),  (19) 
where IBI is the absolute value of beauty and: 

ZI(Q °) = ~ exp(-E/T) 5Q,Qo 
s t a t e s  

Z2(Q °, IBI -- 0) = ~ "  exp(-E/T) Sq,q0 $1BI,0 (20) 
s t a t e s  

implying that states devoid of bottom quarks are excluded from the sum. The 
second term in eq. (19) involves a 6-dimensional integration as the absolute 
value of beauty is treated as a new independent quantum number to be 
conserved in the multihadronic state. It is worth deriving eq. (19) on the basis 
of the same argument about the reduction of a set of clusters to one single 
fireball which has been used in Sect. 2. The statistical ansatz of the clusters 
configuration probabilities, like in eq. (5) leads to the following partition 
function: 

N 

6Qo,E, Q? H z( Q°, IB, I) (21) 
(Q°,IB, I].;~"~, IB, I>O i= l  
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where {Q0, iBil } - (Q0, IBII ' . . .  ,QO, IBND" The above sum can be equiva- 
lently written as a difference: 

oo  N 

~_. 6Qo,E, Qo l-I z(Q°,IB, I) ~I.I,E, 18,1- 
IBI=O {Q°,IBil} i=! 

N 

~Qo,E, Q ° H Z(Q°,IB~I) ~0,E, IB, I" 
{QO ]B,I } i=1 

(22) 

The first term in eq. (22) becomes the partition function of a single fireball: 

o o  

Z Z(Q°' IBI) = ZI(Q°) (23) 
IBI--0 

and so does the second term which becomes the second term in eq. (20). 
The actual values of T and V extracted from the fits to the examined high 
energy elementary collisions predict an overwhelmingly low pure statistical 
production of heavy flavoured hadrons owing to the high value of their mass 
compared to the temperature [5]. The predicted rates are around 10-S/event 
for charmed hadrons and 10 -2o for bottomed hadrons in e+ e- collisions at 
v~  : 91.2 GeV. In fact, advantage is taken of the smallness of the thermal 
functions zj in eq. (11) to perform analytical integrations in the variables ¢ 
linked to conservation of charm, beauty and their absolute values, by means 
of a first-order power expansion [5,3]. This procedure leads to much simpler 
expressions for the abundances of primary heavy flavoured hadrons normal- 
ized to the corresponding heavy flavoured quark pair production rate [3]: 

• E i  7~' zi~(Q ° - q / -  qi) (24) << n j  > >  : '7~' z j  - ~ - - ~  . . . .  , ~,i,k 7s ~ zlz~,¢(Q - qi - q~) 

where the ¢ are now reduced partitions functions computed without heavy 
flavours implying only a 3-dimensional integration. 

Unlike global observables such as multiplicities and multiplicity distribu- 
tions, momentum spectra cannot be predicted without supplementing this 
model with further dynamical assumptions. Indeed, at high centre of mass 
energies, momentum spectra are mainly determined by cluster collective mo- 
mentum reflecting early QCD dynamics, as it has been observed in e+e-colli - 
sions. This results from the fact that, in the cluster rest frame, particles 
emerge at a momentum scale of the order of T, namely some hundreds MeV, 
whereas clusters have much higher momenta. As a consequence, hadronisation 
brings about only a little smearing of the original dynamical distributions. 
However, this hadronisation 'noise' could be observable if all clusters had mo- 
menta along one direction, as it seems to be in pp collisions along the beam 
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Table 2: Predictions of heavy flavoured hadron abundances at v/s = 91.2 GeV 
obtained by the T, V, ~/s parameters fitted from light flavoured hadron abundances. 
The B** prediction is affected by the interpretation of the observed peaks as four 
different states or two different states (within brackets). Taken from ref. [15] 

H a d r o n  Prediction Measured Residual 

D + 0.0926 0.087+0.008 -0.67 

D O 0.233 0.2274-0.012 -0.50 

D, 0.0579 0.0664-0.010 +0.81 

D *+ 0.108 0.08804-0.0054 -3.7 

D+/c-jet 0.103 0.1284-0.027 +0.92 

Dl/c-jet 0.0347 0.0384-0.009 +0.37 

D~/c-jet 0 . 0 4 7 1  0.1354-0.052 +1.7 

D,,/c-jet 0.00536 0.0164-0.0058 +1.8 

B°/b-jet 0.412 0.3844-0.026 -1.1 

B*/B 0.692 0.7474-0.067 +0.82 

B*/b-jet 0.642 0.65 ±0.06 +0.13 

Bo/b-jet 0.106 0.1224.0.031 +0.52 

B~*db-jet 0.206 0.26 4-0.05 +1.0 

B**/B 0.251 0.27 4-0.06 +0.32 

B**/b-jet 0.021(0.011) 0.0484-0.017 +1.6 

B;*°/B + 0.026(0.013) 0.0524-0.016 +1.6 

A + 0.0248 0.03954-0.0084 +1.7 

b-baryon/b-jet 0.0717 0.115 4-0.040 +1.1 

(~'b + E~)/b-jet 0.0404 0.048 4-0.016 +0.48 

~b/(~; + ~b) 0.411 0.24 4-0.12 -1.4 

line or in e+e-collisions along the jet axis. In this case the transverse momen- 
tum PT spectrum of any hadron except pions is predicted to be proportional 
to: 

V / ' • T  + m2 pr  K~ ( v r "  T ) (25) 
m 2 

at temperatures of the order of 200 MeV; for pious the formula is more com- 
plicated due to non-negligible Bose-Einstein statistics effects. Indeed, spectra 
like (25) have been observed for a long time in pp collisions but a conclu- 
sive data analysis is still lacking because most final detectable hadrons ac- 
tually emerge from strong decays, making it very difficult to disentangle the 



86 b'Yancesco Becattini 

primary component, whose spectrum should behave like (25), from the sec- 
ondary one. Furthermore, even primary hadrous PT spectra are broadened by 
possible transverse momenta of the clusters related to hard gluon radiation 
or minijets etc. To summarize, this prediction is very difficult to test, yet it 
would be certainly worthwile as a definite connection between spectra and 
abundances in hadronisation would be established. 
An interesting issue related to the spectra concerns the consistency between 
the assumed probabilities w's and the fact that rapidity distributions in pp 
collisions, for instance, have very different shapes for baryons and mesons [16]. 
As it has been assumed that the probabilities of quantum number configura- 
tions w's are those arising by the splitting of a whole fireball, this maximal 
random choice may seem apparently inconsistent with the experimental ob- 
servation of different spectra for differently 'charged' particles. Indeed this 
is not the case; let p (Q0, . . . ,QO)  be the actual probabilities for a set of 
N clusters having the same volume and let us order the clusters in rapidity 
y l  > . . .  > Y N .  In this case, in a canonical model where all dusters have the 
same temperature, the probabilities w(Q° , . . . ,  QO) chosen according to an 
equation like eq. (5) are symmetric: 

0 0 = w(Q10,..., QO) (26) 

for any permutation a of the integers 1 , . . .  ,N. Therefore, if p (Q0, . . . ,  QO) 
are the actual weights, in order that our previous derivations hold, the con- 
dition to be fulfilled is: 

1 0 w[Q?,..  ° . . . . .  , Q a ( N ) )  , ( 2 7 )  
ff 

Q0 where the square brackets mean that the set [ 1 , . . - ,  QO] is a not-ordered 
one. This condition is weaker than a strict equality between w ( Q ° , . . . ,  QO) 
and p (Q0, . . . ,  QO). Thus, the consistency between previously obtained ex- 
pressions of hadron multiplicities (10) and rapidity distributions can be achie- 
ved in a canonical model by generating clusters with the same volume and 
temperature with random quantum numbers (provided that their sum ful- 
fills the initial state constraint), then giving them a suitably chosen rapidity 
that is allowed, on the basis of permutational symmetry (26), to be strongly 
correlated with their quantum numbers. An example of this procedure is a 
toy Monte-Carlo calculation shown in figure 6 where outcoming rapidity dis- 
tributions of protons and pions in pp collisions at v/~ = 27 GeV are shown. 
Although they look very different, overall particle multiplicities keep the same 
value determined by the simple statistical a n s a t z  for the w's. 

7 Outlook 

The application of a statistical-thermodynamical model of hadronisation to 
the analysis of hadron multiplicities allows to reproduce accurately hadron 
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Fig. 7: Example of a Monte-Carlo calculation of rapidity distributions in pp colli- 
sions at v/s = 27.4 GeV for protons (above) and pions (below) 

multiplicities with only three free parameters. The most interesting results 
emerged from this study are some universality features such as the constancy 
of T and ,ks in elementary collisions (figs. 3, 6). Particularly the constancy 
of temperature suggests that the local energy density (or some closely re- 
lated physical quantity) has a constant critical value at the hadronisation [3]. 
In other words, the local comoving volume available for hadron production, 
hence the local phase space, is determined by the mass of hadronising clus- 
ters; the temperature of the resulting hadron gas is thereby constant. These 
results are also very useful in the perspective of the study of hadron produc- 
tion in heavy ion collisions. 
More tests of this model are needed and are on the way; for the average 
multiplicities and multiplicity distributions at lower energies, where a micro- 
canonical treatment will be presumably necessary, to check the onset of such 
statistical behaviour; for the transverse momenta spectra in high energy col- 
lisions, to put in evidence the contribution of hadronisation and, hopefully, 
establish a link between kinematics and chemical composition. 
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and High Energy Scattering 
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A b s t r a c t .  In this set of four lectures, we provide an elementary introduction to 
light cone field theory and some of its applications in high energy scattering. 

1 I n t r o d u c t i o n  

In these lectures, we will attempt to provide a "hands on" introduction to 
some of the ideas and methods in light cone field theory and its application 
to high energy scattering. Light cone quantization as an approach to study 
the Hamilton dymanics of fields was first investigated by Dirac, who pointed 
out several of its elegant features in a landmark paper [1]. It was first applied 
to high energy physics in the 60's in the context of current algebra [2]. Light 
cone field theory currently finds applications in most areas of high energy 
physics, from perturbative QCD to string theories. 

The elegance and simplicity of the light cone approach results from the 
analogy of relativistic field theories quantized on the light cone to non- 
relativistic quantum mechanics. In fact, this correspondence runs deep and 
it was shown by Susskind that there is an exact isomorphism between the 
Galilean subgroup of the Poincar~ group and the symmetry group of two di- 
mensional quantum mechanics [3]. Furthermore, as was first shown by Wein- 
berg [4], the vacuum structure of field theories simplifies greatly in the infinite 
momentum limit. The combination of the non-relativistic kinematics of light 
cone field theories as well as their simple vacuum structure, has given rise 
to the belief that potential methods of quantum mechanics can be applied 
to field theories quantized on the light cone. This observation is at the heart 
of recent attempts to understand bound state problems in QCD in the light 
cone formalism [5]. Indeed, beginning with the t'Hooft model [6] for mesons in 
l+l-dimensional  large Nc QCD, which made use of the light cone formalism, 
there have been many attempts to study confinement and chiral symmetry 
breaking in this approach (see Ref. [7] and references therein). 

Light cone field theory also provides much of the intellectual support for 
the intuitive quark-parton picture of high energy scattering. Frequently, the 
phrases 'the theory of strong interactions, QCD' and the 'quark-parton pic- 
ture of strong interactions' are used interchangeably. However, it is only in 
light cone quantization (and light cone gauge) that the quark-parton struc- 
ture of QCD is manifest and multi-parton Fock states can be constructed as 
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eigenstates of the QCD Hamiltonian [8]. One can therefore construct Lorentz 
invariant light cone wavefunctions- a fact which has been particularly useful 
in the study of exclusive processes in QCD [9]. Further, in deeply inelastic 
scattering, the experimentally measured structure functions are simply re- 
lated (in leading twist) to the light cone quark distribution functions. The 
partonic picture of light cone quantum field theory was demonstrated very 
clearly in the papers of Kogut and Soper [10] and of Bjorken, Kogut and 
Soper [11]. 

The goal of these lectures is to illustrate both of the above points, the 
attractive features of light cone field theory and its applications to high energy 
scattering, in the simplest possible fashion by working out concrete examples. 
In the first lecture, we begin by introducing the light cone notation and the 
two component formalism. We then define the light cone Fock states and 
their equal light cone time commutation relations. We conclude by discussing 
the structure of the Poincar6 group and demonstrate the above mentioned 
isomorphism to two dimensional quantum mechanics. In the second lecture, 
we explicitly derive the light cone QCD Hamiltonian in the two component 
formalism making use of the light cone constraint equations. It is shown 
that the Hamiltonian can be expressed as the sum of non-interacting and 
"potential" terms. For simplicity, in lecture three, we specialize to the case of 
QED and use the form of the Hamiltonian derived in lecture 2 to illustrate the 
parton picture of high energy scattering. In particular, we study high energy 
scattering off an external potential in the eikonal approximation in QED. 
In the fourth and final lecture we show how Bjorken scaling can be derived 
in QCD using the light cone commutation relations and briefly discuss the 
relation of light cone distribution functions to structure functions. 

There are several reviews that the reader may study to learn more about 
the subject. An introductory review which also includes a guide to the litera- 
ture for beginners is that by Harindranath [12]. Another introductory review 
which stresses recent advances is that by Burkardt [7]. The most recent and 
comprehensive review of the subject is by Brodsky, Pauli and Pinsky [13]. A 
part of our lectures relies heavily on the classic papers of Kogut and Soper [10] 
and Bjorken, Kogut and Soper [11]. The reader should keep in mind that a 
wide variety of conventions are in use in the literature. Some of these axe 
discussed in the review of Brodsky, Pauli and Pinsky. 

The lectures below were delivered at the Cape Town lecture school and 
for spacetime reasons are the "short" form of lectures delivered previously 
at the University of Jyv~iskyl~i international summer school. The topics that 
were omitted in the short version include light cone perturbation theory, 
the renormalization group and the operator product expansion, and small x 
physics. The longer version of these lectures will be published separately at 
a later date [14]. 
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2 L i g h t  C o n e  Q u a n t i z a t i o n  a n d  t h e  L i g h t  C o n e  A l g e b r a  

We begin by defining our convention and notations. Our metric here is the 
+2 metric ~ = ( - ,  +,  +,  +). Note: for my convenience (and unfortunately, 
your inconvenience) I may change notations in the latter lectures. But you 
will have fair warning! The gamma matrices in usual space-time co-ordinates 
are denoted by carets. In the chiral representation, 

I (Oo, o') 0 (0:,) 
and {@~, @v } = _ 2 ~ v .  Above, a i, i = 1, 2, 3 are the usual 2 x 2 Pauli matrices 
and I is the 2 x 2 identity matrix. In light cone co-ordinates, "y+ -- (.~0 ± 
@s)/v~ and ('y~,'y~} = - 2 g  ~v, where g++ = g - -  = 0, g+-  = g - +  = -1 .  
Also, gtl,t2 = 1 with t l ,  t2 -- 1, 2 denoting the two transverse co-ordinates. 
We define x u - ( x ° , x l , z 2 ,  x s) : ( t , z )  and  

x± = (t + z) O 1 A + = (A° ± AZ) (1) 
- ~ -  ; a .  = ~ = - ~ ( a ,  ± a,)  ; v ~  

Note for instance tha t  in this convention A+ -- - A -  and At -- +A t. Also, 
q2 = _ 2 q - q +  + q2. Hence, a "space-like" q2 implying large space-like com- 
ponents would correspond to q2 > 0. 

We now define the projection operators 

a ± = ~ o ~ ±  _ ~ ±  

v ~  - 2 ' (2) 

which project out the two component spinors ¢+ = a + ¢ ,  [10] 

¢ + =  ¢2 ; ¢ _ :  , (3) 

k¢4 
where ¢ 1 , " "  ¢4 are the four components of ¢.  It follows from the above tha t  
¢ + + ¢ _  = ¢ .  

Some relevant properties of the projection operators a + are 

(aq-) 2 - - a  + ; a + ~  ~ = = 0 ;  a + + a - = l  ; (a+) t = a  q-. (4) 

We can use these to show that  

a+¢~= = 0 ; a ± ¢ +  - ¢ +  ; a+'~ ° 1 .0  + = ~'r a ; a± '~l  = - r ± a  + . (5) 

We will make liberal use of these identities in deriving the light cone Hamil- 
tonian in lecture 2. 
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A particular property of light cone quantization is tha t  it is the two com- 
ponent spinor ¢+ above that  is the dynamical spinor in the light cone QCD 
Hamiltonian PQCD" Interestingly, the same feature is observed for fermion 
fields which obey equal time commutation relations when they are boosted 
to the infinite momentum frame. The dynamical spinors ¢+ are defined in 
terms of creation and annihilation operators as 

¢+ --- +>0 21/4-~-~r) 3 E [ eik'zbs(k;x+) +e-ik'ZdI(k;x+)] ' (6) 
s==l: 

where b8 (k) is a quark destruction operator and destroys a quark with mo- 
mentum k while dt,(k) is an anti-quark creation operator and creates an 
ant i -quark with momentum k. They obey the equal light cone time (x +) 
ant i -commutat ion relations 

{b,(k, x+), b~, (k', x+))  = {d,(k, x+), d~, (k', x+)) 
-- (27r)3~ (3) (k - k')~ss, • (7) 

The above definitions ensure that  the fermionic contribution to the light 
cone QCD Hamiltonian can be written as the sum of kinetic and potential 
pieces, Py, QeD ---- Py, o -t-VQCD, where the kinetic piece of the Hamiltonian is 
defined as 

f d3k (k~ + M 2) 
PY, o = (27r)3 E 2k + (b~(k)b,(k) +d~(k)d~(k)) . (8) 

s----::l: ½ 

These points will become clearer when we explicitly derive the QCD light 
cone Hamiltonian in lecture 2. 

The gauge field A t has two dynamical components A~(x) with i = 1, 2 in 
light cone gauge A + -- 0. These are defined in terms of creation-annihilation 
operators as 

A~(x )  = 
dak 

+>0 ~ ( 2 ~ r )  3 

~=1,2 

where the )Cs here correspond to the two independent polarizations and 
a~ ? (a~) creates (destroys) a gluon with momentum k. They obey the com- 
mutat ion relations 

[a~Ck),ab,? (I¢/)] ---- (2~r)3 ~(3) (k -- ~'-"~)Oab~)~)~' . (10) 

In an analogous fashion to Eq. 8, the bosonic kinetic energy can be written 
(after normal ordering) as 

f d3k (k~ + M 2) 
(2~r)-----~ Z 2k+ a~ (k)a), (k). (11) 

A:l ,2  
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We will now discuss the structure of the Poincar6 group on the light cone. 
For the field ~r, which here denotes vector or scalar bosons, we can define 
the stress-energy tensor 

~ = _ ~ a % ~  - O~z: ,  (12) 

where £ is the Lagrangean density, and / I~  is the generalized momentum 

~ = 6Z: (13) 

Keep in mind that the carets denote quantities in the usual spacetime co- 
ordinates. Define now the following generalized quantity 

^,v f ~[7~,~v]~# for spinors (14) (gc, g~ -g#gc,) for vectors 

One can then define the boost-angular momentum stress tensor 

J~"~ = ~ " ~  - ~ "  + ~ 2 " ~ ; & .  ( is)  

There are ten conserved currents 

O ~  ~" = 0,  

0~J ~"~ = 0, (16) 

and correspondingly, ten conserved charges, 

p,U = f d~l d~2 d~3 ~o/a, 

^ 0  ^/.~w ^ gVIU*" = / d~' d~'d.~a (~u~'°*'-~:*'~°" + II~27r. ck.) . (17) 

The four components of the energy-mome~um vector pu  and the six com- 
ponents of the boost-angular momentum M ~ comprise the ten generators 
of the Poincar~ group x. These generators satisfy the Poincar6 algebra 

ip.,  v] = o ;  = ( r o i . .  - 

The six components of the boost-angular momentum can be further split 
into the three generators of rotations 1~/I ij = e ijk.]~ (where ff~ is the angu- 
lar momentum operator) and three generators of boosts/~i  = fiT/i0. In the 

I The Poincar~ group is a sub-group of the conformal group which contains 15 
generators, the additional generators being 4 conformal transformations and 1 
dilatation. 
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language of Ref. [1], these are referred to as kinematic and dynamic opera- 
tors, respectively, since the former is independent of the interaction while the 
latter isn't. 

Transforming the above to light cone co--ordinates, we obtain P~ -- 
(p+, p1, p2, p - ) ,  where P± = (/5o ± ps ) /V~ ' and 

M , V =  $1 0 Js B1 (19) 
$2 - J s  0 

-K3  -B1 -B2 

Above we used the following definitions 

BI - ( g l  + ; S 2  = ( g 2  - J1) 

S,  = ( g l  - J~) (Ks + J~) 
; $ 2 =  

The commutation relations among the M~V's and the P~'s are of course the 
same as in Eq. 18. The operators B1 and B2 are kinematic and boost the 
system in the x and y directions respectively. In addition, the operators J3 
and interestingly, K3 are kinematic and rotate the system in the x-y plane 
and boost it in the longitudinal direction respectively. 

An interesting observation by Susskind [3] related to the above is that  the 
commutation relations among the seven generators P + ,  P t ,  J3 ,B1  and B2 
are the same as the commutation relations among the symmetry operators 
of non-relativistic quantum mechanics in two dimensions. Indeed, one can 
formally make the correspondence, 

• P -  ~ Hamiltonian. 
• P~ • ~ Momenta. 
• P +  ~ Mass. 
• Ja ~ Angular Momentum. 
• Bt  ---* generators of Galilean boosts in x-y plane. 

These seven generators obey the commutation relations 

[P- ,  P,] = [P- ,  P+] = [P,, P+] 

--- [g3, P - ]  = [Js, P + ]  - -  [ B t ,  P + ]  = 0 .  (20) 

and 

[J3, Pt] -- i e t tP  ~ , 
[J3, B t] = ietzB z , 

[B t, p - ]  = _ i p t  , [B ~, pI] = _ i S u p +  . 

Above eij is the Levi-Civita tensor in two dimensions. Since they are kine- 
matic operators, they leave the planes of x + = cons tan t  invariant under their 
operations. 
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Susskind, Bardacki & Halpern [15] and Kogut & Soper have shown that 
the above mentioned isomorphism is responsible for the non-relativistic quantum- 
mechanical structure of quantum field theories on the light cone. The simplest 
illustration of this isomorphism is the fact that the free particle Hamiltonian 
takes the form 

H = p -  Pt2 + M~ 
2P+ 

Recalling the form of the energy in two dimensional quantum mechanics, 
we obtain the isomorphisms above. For QED and QCD, the above form is 
modified by the addition of a potential term which we will discuss in detail in 
lecture 2. Finally, we should mention that the other kinematic operator, K3, 
the boost operator in the longitudinal direction, serves to rescale the other 
operators 

exp ( iwK3)P-  exp( - iwK3)  = exp(w)P-.  

exp ( iwg3  ) J3 exp ( - i w  g3  ) = J3 . 

exp( iwK3)S exp( - iwK3)  = exp(-w)S.  (21) 

This property of/(3 will come in handy in lecture 3. 

3 T h e  L i g h t  C o n e  Q C D  H a m i l t o n i a n  

In this lecture, we will derive an explicit form for the light cone QCD Hamil- 
tonia~ making use of the light cone constraint relations. Consider first the 
fermionic part of the QCD action 

SF = / d 4 x ~ b ( ~ + M ) ¢ .  

Above, PU = - i D  ~' - - i (O t' - igA~'). For convenience, we will not write the 
integral f dix, in the following but it must be understood to be there. Then 
writing out the above action explicitly, 

SF = ¢ 7 - P - ¢  + ¢7+P+¢ + ~bTtPt¢ + ¢ M ¢ .  

Consider now the first term in the above: 

¢7 -P~  = ¢*~°7 -P-¢  --~ V ~ ¢ ~ P _ ¢ - .  (22) 

To dissect the above, we first decomposed ~0 = (.y+ + 7 - ) / v ~ ,  made use 
of (7-) 2 = 0, and the properties of the projector a + in Eq. 4 to obtain the 
RHS. Similarly, it is recommended to the serious student that he or she show 
that 

(b,r+p+¢ = ¢ 5 ¢ t + P + ¢ + ,  

= 

¢ M ¢  = M (¢t+~0¢_ + ¢ t~o¢+)  . (23) 
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One then obtains 

1 
SF = x/~¢t__P-¢- + v/2¢t+P+¢+ + 

where we have written the fermionic piece of the action in terms of the two- 
spinors ¢_ and ¢+ and their hermitean conjugates. 

Following Eq. 13, the momenta conjugate to these two-spinor fields are 

/ z +  = 6 ( 0 + ¢ + )  = 

6£ 
//_ - - -  - o .  ( 2 5 )  

Since trivially [/ /_,¢_] = 0, the two-spinor ¢_ is, unlike ¢+, not an inde- 
pendent quantum field. We will now show that one may derive a constraint 
equation (i.e., independent of the light cone time x +) for ¢_ in terms of 
the dynamical field ¢+. The light cone constraint relations can be obtained 
from the operator equations of motion. In this case, it is the Dirac equation 
( ~ +  M) ---- 0, or 

( - i t3_  - g A - ) " r - ¢  + (-it3+ - gA+)v+¢ 
2 

+ ~ ( - i O j  - g A j ) T J ¢  + M e  -~ O. (26) 
j = l  

Multiply the above through by ~+. Since (~+)2 = 0, this projects out the 
x+-light cone time-dependence in the above and we obtain (after liberally 
using our projection operator tricks from Eq. 4) the equation 

v~P_¢_ -- _~o(~  + M)¢+.  (27) 

In light cone gauge, A_ = - A  + = 0, hence P_ = ( - i t3_  - g A _ )  ~ - i O _ .  
With this gauge condition therefore, one can easily invert the P_ = - P +  
operator and one obtains the light cone constraint equation 

q0 
¢_ ---- ~ (F/~ + M) ¢+ .  (28) 

Thus for light cone time x +, ¢_ is determined completely by ¢+ at that  
time. Only the two components of the spinor ¢ corresponding to ¢+ are 
independent dynamical fields on the light cone. 

We can now use the above obtained constraint equation to replace ¢_ in 
Eq. 24 for SF.  For instance, 

q 0  t 
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( - )  t M  1 
0 ¢ + (  -/=/t)~--~(~+ M)¢+.  

Now rescale the fields ~b ~ 2-1/4~ 2. As an exercise, the reader should use 
the light cone constraint equation above, the properties of the projection 
operators a + in Eq. 4 and those of the light cone gamma matrices to first 
substitute for ¢_ everywhere and then demonstrate the following identities, 

, , ,  + 
(¢>o¢_  + ¢, : Y vQ 

2 

~t+( M 1 
= - ~ t ) - f g ( ~ +  M ) ¢ + .  

Putting these together with the other term above, our result for the fermionic 
action expressed solely in terms of the dynamical two-spinor tb+ is 

S F  = _¢ t+p-¢+ + ~¢t+( M -1~) ( /~+ M)¢+ .  (29) 

We now turn to the bosonic contribution to the action, 

s~ = ¼£~.~,..,a, (30) 

and following a procedure analogous to the fermionic case, shall write it in 
terms of As, the two transverse, dynamical components of the gauge field 
A #. We have seen earlier that the choice of light cone gauge A_ = - A  + = 0 
greatly simplifies the light cone constraint relation for the fermions. In this 
gauge, the various components of the field strength tensor also simplify to 

F~_ = - a  A~_ 
_ 2 a b c A b A c  F~a+ = O~A~_ - O+A~ + 9 J  ~ t " %  , 

F, a = - O _ A t  =_ - E ~  

In addition, there are of course the purely transverse pieces Fij; with i , j  = 
1, 2. LFrom the above it is evident that there is no (light cone) time derivative 
O+A+ in the action. The field A+ therefore has no momentum conjugate and 
we may use the operator equations of motion to eliminate the field A+ = 
- A - .  

2 This rescaling gets rid of the V~ factors in the action. This also explains the 
peculiar 2 -1/4 normalization factor in Eq. 6 for the properly normalized ¢+ 
field. 
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The equations of motion are the Yang-Mills equations of course. The light 
cone constraint equation is just Gauss' law on the light cone since it must be 
valid at all times. This condition is then 

(DtFt+)s  + ( D _ F - + ) s  = _ j + , s  ~ _02_A-,S = j+,s  + (DtEt )S ,  

where E~ are the two transverse components of the electric field and Dt is 
the covariant derivative Ot - igAt. We can write our light cone constraint 
equation for A-  compactly below as 

1 
A- ,S  = ~ (g+,s + (DtEt)S)  . (31) 

Returning to the action 

SB 1F2 1 2 Fs  Fs  
4 -  ~ - ~J~- ~ -  

substituting the expressions for the field strength components in terms of the 
gauge fields and performing an integration by parts, we obtain 

1 
21-(0_A+) 2 (O_A~) (O+A~) (32) SB = ~ F  i2 _ A~(DtEt )S  _ _ . 

Before we substitute for A+ above, we will first write out the full action 
SQCD = SF + SB -- Jezt " A: 

SCtCD --¢ t+ (--iO- gA-)¢+ + lc t+(M 1 1 2 = - ~ - l~t)-p-'jCl~t+ M)~p+ + ~ f  i 

- A ~ ( D t E t )  s - 2(0_A+)2 - (O_A~)(O+A~) - J+=tA+. 

Consider the first term above. We can write this as 

-¢'+ ( - i 0 -  - gA-)  ¢+ = - i~'+0+¢+ - J ~ . A +  , +  

where T+'a = ¢~_tAs¢+. (The A s are the Gell-Mann SU(3) matrices.) We 
"" d y n  

now substitute the above result in our expression for the action and after 
a) defining J+ + = Jdun + J+xt, 
b) performing an integration by parts, 
c) making use of the constraint relation Eq. 31 to eliminate A+, 
we obtain finally, 

Sqc~ = -i¢'+0+¢+ 

1 , (M - P~)~+ (P~ + M)¢+  - ( O - A t )  (O+At) + 4F}  + 3¢+ 

+ + + + (33) 
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The final step before we obtain the Hamiltonian is to identify the momenta 
conjugate to the dynamical fields (now with the proper normalization!), 

n + 1 . - , . _  _ let+. 
6 ( 0 + ¢ + )  

- -  6(O+At) - O - A t  - - E t .  (34) 

Writing out the fields and their momentum conjugates in terms of the creation 
and annihilation operators introduced in Eqs. 6 and 9, and making use of 
their commutation relations, the reader may confirm that 

°''(z) ,  At = { n +  ¢+ = ia ( .  - 

The Hamiltonian density in our convention is defined as 

H =. PQCD = SQCD rrlermi~ .h rTbose~ 

(35) 

We can therefore write our final expression for the Hamiltonian density as 

1 1 2 D t E t ) - - ~ ( J  + + DtEt) PQCD ---- -~F~ + l (g+ + ( ) 

+ 1¢t+( M 1 - ~t) ~-~ (//t + M ) ¢ + .  (36) 

We have therefore succeeded in obtaining the light cone Hamiltonian in 
QCD, expressed solely in terms of the two-spinor ¢+ and At, the two trans- 
verse components of the gauge field. The following observations can be made 
regarding the above expression. Firstly, one can show straightforwardly that  
the light cone Hamiltonian can be written as 

PQCD = Po + VQCD, (37) 

where P0 (the sum of the RHS of Eqs. 8 and 11) is the piece of the Hamilto- 
nian not containing any factors of the coupling g and VQcD is the rest, which 
can also be written out in terms of creation-annihilation operators. Fur- 
thermore, the ground state of the non-interacting Hamiltonian P0- is also, 
remarkably, the ground state of the full Hamiltonian. This is the meaning be- 
hind statements one may have heard that the light cone vacuum is 'trivial'. 
Because the vacuum is trivial, one may simply construct any eigenstate of 
the full Hamiltonian in terms of a complete Fock eigen-basis corresponding 
to eigenstates of the non-interacting Hamiltonian. As we shall demonstrate 
in the next lecture with a specific example, this point forms the basis for the 
quark-patton model in quantum field theory. 

Just as in non-relativistic quantum mechanics then, one can use light cone 
time ordered perturbation theory to construct these states. Unfortunately, 
there is no room to discuss time ordered perturbation theory here but it will 
be discussed in the "long" version of these lectures [14]. 
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There is one point we have not mentioned thus fax but it threatens the 
entire pretty picture above. This has to do with the terms lIP + and 1/(P+) 2 
above. Recall that they were obtained by inverting the light cone constraint 
equations in light cone gauge. Clearly, that operation and these terms are not 
well defined for P+ = 0. The simple vacuum is thus only deceptively so and 
all the complications are now hidden in the zero-mode. That this would be 
the case should have been clearer in retrospect. Defining the operator 1/P + 
requires knowing the boundary conditions of the fields at large distances 
and therefore, should be sensitive to confining and chiral symmetry breaking 
effects.. Attempts to regulate the zero mode, a well know example of which is 
discretized light cone quantization [13], also result in a non-trivial vacuum. 
On the other hand, perturbative physics should not be terribly sensitive to 
how fields are regulated at large distances. Different 'epsilon' prescriptions 
corresponding to different boundary conditions at infinity give the same short 
distance physics [16], The justification of the above approach is therefore 
the success of the parton model in describing physics at large transverse 
momenta in QCD. The program to describe non-perturbative physics in the 
same framework is very advanced and we refer the reader to Ref, [13] to read 
of the latest developments. 

4 High-Energy Eikonal Scattering and the Pa t ton  
Model in QED 

In the previous lectures we developed some of the basic formalism of light 
cone field theory. We will now apply this formalism to a specific example; high 
energy scattering of an electron from an external potential in QED. We will 
show how one recovers the standard Eikonal picture in this formalism. More 
importantly, our results clearly can be interpreted in terms of a parton model 
picture of high energy scattering. This lecture closely follows the excellent 
paper of Bjorken, Kogut and Soper [11] where this example and others are 
discussed. For convenience, we will also use their "-2" convention (for eg., 
A_ = A + and At = -At) .  

The light cone Hamiltonian in QED is similar to the QCD Hamiltonian 
derived above in Eq. 36 and of course much simpler. To treat the problem 
of scattering off an external potential, we introduce an external potential a# 
using the gauge invariant minimal substitution p~ -~ p~ - ga~. The QED 
Hamiltonian including the external potential aa is then 

1 ~2~.t ~, 1 t 
P~at t ( x  +) = / a ( Z x t  d x -  ea+¢t+¢+ + ] :  w+~+ (p+ _ ea+) 2 ¢+¢+ 

1 ( M  + i q .  (p - e A  - ea))¢+ + ct+ ( M  - i~r. (p - e A  - ea)) 2(p+ _ a+ ) 
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+e¢ t+¢+p+  1 A + I  } 
_ ea +p" ~ Z Atp2At " 

t=1,2 

Note that one can define 

(3s) 

(z- ) exp - ie d~'a+(x+,xt,(') ¢+(x+,xt,(), 

(39) 

where e is the sign function. This can be checked by multiplying through by 
p +  _ e a  + 3 

Now write P~cau = PQED + V, where PQED is the usual time independent 
QED Hamiltonian with a ~ = 0 and V(x +) = P~au - PQED" We wish to 
construct the scattering matrix Sfl in the interaction picture. In the usual 
quantum mechanical treatment, 

¢~ (x +, zt ,  x - )  = e~P;~ ~'2÷ ¢+ (0, xt, x - ) e - i P ;  ~ 2÷ . 

At(x + , xt, x-) = eiPJ Eoz+ A(0, xt, x-)e -~PJ~'2+ • (40) 

Then, the scattering matrix for the scattering of an electron off an external 
potential is given by 

S,, =< flT {exp ( - i  / dx+V(z+)) } ,i > , (41) 

where 'T' denotes light cone time ordering and li > and If > are asymptotic 
states which are eigenstates of the QED Hamiltonian PQED. They can thus 
be evaluated in Rayleigh-SchrSdinger perturbation theory (see the discussion 
at the end of lecture 2). 

We want to compute the scattering matrix in the high energy scattering 
limit Pi, P / ~  oo. Consider the states ]I > and IF >, which may be states in 
the rest frame of the electron. They are related by boosts to the states li > 
and If > above. Then li > =  e -iwKn II > and If > =  e-iwKn I F >, where K3 
(defined previously in lecture 1) is the generator of boosts in the longitudinal 
direction. In QED, K3 is the operator 

, ( 42 )  
z + = 0  

and w is the rapidity corresponding to the boost. The scattering matrix ele- 
ment between the scattering states in the rest frame is then 

< Fle'~KnT {exp ( - i  /dx+V(z+)) } e-'~Ks,I > . 

a In QCD, the sole change is to replace the exponential on the RHS by a path 
ordered exponential. 
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Using the definition of path ordered exponentials, this relation can be 
written as 

< F,T {exp ( - i  f dx+ei~Ks V(x+)e-iwgs) } lI > . (43) 

A great advantage of the light cone formalism is that the fields transform 
simply under boosts. We have 

ei~Ka¢l(x+, xt, x-)e -i~I¢8 = e~'D¢i(e-Wx +, xt, e~x-).  
ei~Ka AI(x +, xt, x-)e -i~K8 = Ai(e-~x +, xt, e~ x-)  . 

The above can be shown explicitly by computing the commutators [Ks, ¢I] 
and [Ks, Ax] using the definition of Ks in Eq. 42. The field a however com- 
mutes with Ks and therefore does not transform under boosts. 

Consider now the argument of the exponential in Eq. 43. We can show that  
all but one of the terms in V(x +) are invariant under the boost operation. 
For example, 

. , .t.,.  1 .,.t.~. _-io~Ka e i~Ka q~lq~l --~--~'~l 'q) l  e; t 1 t --+ ¢i¢1 ~ - g ¢ I ¢ ~  • 

Above, we have used the fact that elements of the Lorentz group are simply 
rescaied by boosts, ei~KSP+e -i~K8 = e~P +, as well as Eq. 44. The only term 
that does not remain invariant is 

Hence, 

eiwKa v (x+ )e--iwKa 

+ O(e-W). (44) 

Now let x-  ~ e~x - above. Then 

ei~tc8 V (x+ )e-i~K3 

f d2xt dx- ea+ (x +, xt, e-Wx -)¢/t (e-~x+, xt, x-)¢(e-~x +, x - )  ggt ~ 

+ o(e-~) .  (45) 

Going to the infinite rapidity limit w ~ c~ corresponding to very high energy 
scattering, we note from the above that the operators are all evaluated at 
x + = 0 so the time ordering in x + is irrelevant in that limit. Then one can 
show in that limit (and this is a subtle point) that 

Sli = <  FVP[I > +O(e -~) =_< fVP[i > +O(e -~ ) .  (46) 

= / d2xt dz- e~'e a+Cx +, xt, x-)¢~Ce-~x +, xt, e~'z-)¢Ce-'x +, xt, e~'z - )  
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Thus we have expressed Sfi again in terms of the states ]i >,  If  >,  thereby 
demonstrat ing the Lorentz invariance of these states in the infinite momen- 
tum limit. Also, above 

where 

and 

79=exp (-i f , (47) 

X(Xt) = e f dx+a+ (x +, xt, 0) ,  (48) 

p(xt) = / dx-¢tt(O, xt, x - ) ¢ I ( 0 ,  xt, x-) .  (49) 

We have therefore recovered the well known eikonal scattering limit in QED. 
We shall now show that  the above derivation has a deep connection with 

the par ton model. The asymptotic 'in' state of the electron, [i >, is an eigen- 
s tate  of the QED Hamiltonian PQED- We can expand li > in terms of the 

"bare" quanta  4 associated with the fields ¢+ (0, act, x - )  and At(O, xt, x-) at  
x + = 0: 

l i > : f d ' k t ~ + > o  dk+k+ ~ { ~ g(kt,k+,A)at(kt, k+,A)l 0 > 

• , 1 . ,  k+ 

h ( k , , k 2 l s , , s 2 ) b t ( k , ; s , ) d t ( k 2 ; s 2 ) l  0 > + . . .  ~ . ('DO) Z 
J 81182 

The creation and annihilation operators introduced here are the same as 
those in lecture 1. The coefficient h above can be interpreted simply as the 
ampli tude for [i > to contain a bare electron with momenta  k l  and spin Sl, 
and a bare positron with momenta k~ and spin s2. It was shown first by 
Drell, Levy and Yan that  the amplitude squared for an arbi t rary  number  of 
par ton  eigenstates, integrated over phase space could be simply related to 
the s tructure functions W1, W2 [17]. 

We can also see this here if we similarly expand If > in terms of the bare 
quanta.  The scattering matr ix  Sfi in Eq. 46 can then be evaluated if we move 
7 9 past the creation-annihilation operators till it acts on l0 >: 

79btdtat'" a t 10 > =  79bt79 -1''" 79at79-a791 0 > • (51) 

Since it is evident tha t  79 is invariant under translations in the x -  direction, 
it commutes with the generator of x -  t rans la t ions-P  +. One can check tha t  

a These axe eigenstates (in QED!) of P0-- in Eq. 37. 
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P[0 > =  10 >. This follows formally by expanding :P and requiring tha t  
the operators in p(xt) are normal ordered. How do the creation-annihilation 
operators transform with :P? Using the light cone commutation relations, 
{¢+(x),¢t+(x')} = &(3)(x - x'), we find 

~¢~+ (0, Xt, X--)P -1 ---- exp ( - i x )  ¢~(0,  xt, x - ) .  (52) 

Fourier transforming the above, and using Eq. 6, we obtain for the electron 
creation operator 

f d2k$ 
pbt(kt ,  k +, s)'p-1 = [ ~*(z: k +, s)75(k~ _ kt) (2~r)2 ~ ~ t ,  J 

(53) 

where (with qt = k~t - kt) 

~(qt) = f d2 zte -iq''=' e -ix(x') . (54) 

Similarly for the positron creation operator 

T, dt(kt, k+,s)p-1 = / d~k~ ~rl. '  l.+ s)75c(k~ _ kt) (2 . )~ ~ t  . . . .  
(55) 

with 

75e(qt) = / d2 xte-iq"=' e+iX(z') " (56) 

Finally, P a t P  -1, since all the operators in P commute with a t. 
What  we have learnt from the above is that  when a high energy bare 

electron or bare positron interacts with a potential at xt, the net effect is to 
multiply its wavefunction by the eikonal phase e - ix  or e +ix respectively. The 
following physical picture then emerges from our manipulations above. 

• The scattering of high energy particles (denoted here by '[i > ' ,  which is 
an eigenstate of the Hamiltonian PQED) is not simple-i.e., it cannot be 
described by a simple overall phase. 

• However, due to the "potential" structure of QED on the light cone, the 
physical particle states ([i >) can be expanded in a complete basis of 
mult i -parton eigenstates (eigenstates of PO, QED)" 

• The scattering of these partons is simple-they acquire an eikonal phase 
in the scattering. 

• The mutual interactions of partons in the physical state ]i > is complex, 
but  as the rapidity w --+ ~ ,  these interactions are slowed down by time 
dilation. Recall that  in Eq. 44, the only term that  survives is the one tha t  
contains the coupling to the external field a and all the other terms which 
contain the interactions of the partons with each other are suppressed. 
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Chronologically, one can view the scattering as follows. Partons in the 
initial state interact strongly for - co  < x + < 0 with the potential VQED. 
At x + = 0, each individual parton scatters simply off the external potential, 
acquiring an eikonal phase. For 0 < x + < co, the partons then again interact 
among each other with the potential VQED. This picture of scattering is also 
known as the impulse approximation. It explains the striking phenomenon of 
Bjorken scaling observed in deep inelastic scattering at very large momentum 
transfers. 

Finally, for completeness, we will mention that the cross-section for elec- 
tron scattering off an external potential is given by 

fk d2ktldk+ d2ktndk+ 
d o "  = " ' "  

+,...,k+ >0 (21r)3k + (2~r)Sk + 
n 

k+ - k, +)  × I < fJT l i  > 12 , 
i - -1  

where the transition amplitude is defined as 

flT-li >=• f[U(oo,O)[P - 1]U(0,-oo)[i > . (58) 

Above, U is the light cone analog of the usual unitary evolution operator in 
quantum mechanics. 

5 B j o r k e n  S c a l i n g  a n d  L i g h t  C o n e  F o c k  Dis tr ibut ions  

In this last lecture, we will discuss the "light cone" limit x 2 -+ 0 of deep 
inelastic scattering, in QCD. For very large momentum transfers, in this 
limit, one observes the phenomenon known as Bjorken scaling. Unfortunately, 
we will not have room for a discussion of the renormalization group ideas 
which predict, in QCD, the experimentally observed logarithmic violations 
of Bjorken scaling. These will be presented in the "longer" version of these 
lectures at a later date [14]. 

In deep inelastic scattering of an incident lepton off a hadron or nucleus, 
the kinematic invariants are the square of the momentum carried by the 
"space-like" virtual photon q2 = _Q2 < 0, (note: we use the '  -2 ' convention 

and XBj ---- ~ . . ,  where P~ is the four-momentum of the target. The here) 
cross-section expressed in terms of these invariants is a product of the point 
particle Rutherford cross section times a form factor, the electromagnetic 
form factor of the hadron/72. In general, F2 -~ F2(XBj, Q2), but in QCD, as 
Q2 __~ 00, F2(xBj, Q2) ._~ F2(XBj). The scaling of the structure function as a 
function of xBj is what is known as Bjorken scaling. In this lecture, we will 
derive Bjorken scaling using the free field commutation relations. 

The cross section for the inclusive deep inelastic scattering process l(k) + 
(h, A)(P) --~ l(k') + X, where X denotes undetected final states, is a tensor 
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product of the leptonic tensor I ~ and the hadronic tensor Wu~. The hadronic 
tensor is defined as [19] 

Wuv(q2 ,p  " q) = E(2rr)46(4)(q + P - P n )  < Plfl.(O)ln > <  nlJr.(O)lP > 
n 

-'9" / d4ze iq'z < P[Ju(x)J~(O)[P > . (59) 

The sum above is over all haxIronic final states with momenta Pn. Since qO+ po 
and pO are +ve, we can write the above as 

= / ~ e ' ~ ~  < Pl[S.(x) ,  J~(0)]lP > • (60) 

Since the commutator  vanishes outside the forward light cone, we will write 
the above as 

f z  aC~xt < Pl[J"(x) '  J~(0)]IP > (61) 
~<2x+z-  

Above, J~ = ¢7 .Aa¢(x) .  
In the high energy limit q+ ~ co, q -  = fixed, the largest contribution 

to  W ~  comes from the region of the integral with the smallest oscillations, 
or x + finite, x -  ~ 0. Since causality demands that  x 2 = 2x+x - - x~ < 
2x+x - ,  the largest contribution to W ~  is from the region of the light cone 
x 2 -4 0. In other words, the structure function is dominated by the light cone 
singularities of the commutator  of currents. The limit q+ --+ co and q -  = 

fixed, corresponds to the limit y = P . q / M  --~ co, Q2 __~ co and xBj = 
fixed. 

Let us examine the commutator  in Eq. 61 in the limit x 2 --~ 0. Here, using 
the "free field" current commutation relation which is reasonable in the weak 
coupling limit, 

¢ ( - x ) }  = 1 7 g  Oge(x°)6(x2) + O( M~ x2) , (62) {~(x),  

we obtain 

[ J . ( x ) ,  - 

l o a e ( x ° ) 6 ( x ~ ) .  (63) 

We now use the identity 

7.7~7~ = S.~7 ~ + ie.~7~75 , (64) 
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where 

S~,,,~Z = (g~,~,g~,z + g~,~g~,~ - g~vg~) , (65) 

and e u ~  ~ is the anti-symmetric Levi-Civita  tensor in four dimensions. 
Substituting this identity in the current commutator,  we obtain 

[Jr(x) ,  g~(-x) ]  ::-~o [(~(x)S~,va~7~¢(_x ) + ie~,va~(b(x) 7 ~ 7 5 ¢ ( - x )  
I .  

We now perform a Taylor expansion on ¢ and ¢,  

+ ( : ) ¢ ( _ : )  = : . ,  . . .  : . .  + ( 0 )  . . .  ¢ ( 0 )  . 
n 

Put t ing  this back into our expression for the commutator ,  we obtain 

o o  kXD1 . . .  X D  ~ g~(n+l) 

( 6 8 1  

where 

~., , . . . , . .  (0) = ¢(0)~ ~ 0~, " -  0~. ¢(0).  (69) 

We may note the following points regarding the above result. 

• Only the odd terms in the sum survive. The even terms cancel out. 
• We have expanded the operators in the vicinity of the light cone in a series 

of local operators-each of which multiplies the same singular function. 
• Only a particular combination of Lorentz indices appears. We are in- 

terested only in the parity conserving terms, which is why the terms 
multiplying the anti-symmetric tensor e . ~  do not appear. In general 
however, there will be an additional piece proportional to e . ~  which 
contributes to W~v. The corresponding structure function often referred 
to  as F3 is measured by parity violating currents, as for example is the 
case in deep inelastic neutrino scattering. 

• O is a twist two operator.  Twist is a term which refers to the 'dimension' 
- 'spin' of an operator.  Our operator  above has dimension -- 3 /2  x 2 + n 
and spin = n + 1. In general, the expansion of the operators on the light 
cone can be organized into an expansion over successively higher twists, 
called the operator  product  expansion (often known by its acronym OPE)  
the coefficients of higher twist operators being suppressed by powers of 
x 2. The dominant operators at short distances are those with the smallest 
twist. There are a finite number of twist two operators. 
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In general, the naive dimensions of the operators are modified by interac- 
tions and they acquire 'anomalous dimensions', which may be determined by 
a renormalization group analysis. We will not discuss the OPE any further, 
but refer the reader to some of the textbooks with excellent discussions of 
the topic [18-20]. 

We return from this digression to topic of immediate interest: the deriva- 
tion of Bjorken scaling. Recall that we had 

W~v = f d4ye iq'y < P[[J~(y),Jv(-y)][P > • 

We now substitute Eq. 68 in the RHS of the above. The matrix element of 
the symmetric, traceless operator O (n+l) between the hadronic states, has 
the tensorial structure, 

< PIO(0~+~!.,.. (0)IF > = A.+I  P/~Pm ""Pu .  + B . + ,  6m.2p/~p. . ""Pu,. 
+ less singular terms. (70) 

The second term above gives an additional power of x 2 when contracted with 
the coefficients and is therefore suppressed. The leading contribution then is 

OO 

n=l,3 

Define a function mad its Fourier transform 

(p. y)" dx • l ( x )  
Y) ~ An+l  = ~ e'zY'Y X (72) 

n=l,3 

Substituting the above into Wu~ and using the identity 

we obtain 

f d4yeikV6(y2)e(y°)=(2~)2e(k°)6(k2), (73) 

a8 

) 
( p .  q) q2 / 

f ( x ) (  q~,q~) 
2 Z  g~v q2 " 

(75) 

Wu~, = f dx27r f(X) + xP)aSm"~/~(2~r)2e(xP° ÷ qO) 

~-~-~6((xP + (74) q)2). 

Using the definition of Suva ~ in Eq. 65 and performing the delta function 
integration which sets x - XBj = -q2/2P" q, we can write the above finally 
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The electromagnetic tensor W.~ has the most general tensorial decompo- 
sition, 

IV.,. = alP.P, .  + a2P.q~, + asP,.q. + aaq.q~, + asg~,,. . 

The symmetry properties require however that a2 = as and from current 
conservation q " W . v  -- 0, and similarly for q"W~,  = O, we obtain, 

- F ,  ( g . v  - q"q~" 

(P " q)qv 
e ) 

(76) 

where F1 and F2 are the structure functions. Comparing the above to our 
result Eq. 75, we observe that F2 -- f (XBj) ,  which is the famous scaling 
phenomenon known as Bjorken scaling. Further, in this limit F1 = F 2 / 2 x -  
this result is known as the Callan-Gross relation. 

We shall now show that the structure functions derived above can be 
simply related, in leading twist, to the light cone patton distributions and 
further show that F2 thereby has the intepretation of being the probability 
that a quark has a fraction x of the total hadron momentum p+ on the light 
front. 

Consider the forward Compton scattering amplitude for the virtual pho- 
ton scattering of the hadron in deep inelastic scattering, 

i f  d4zeiq'z < P I T(J.(z)J, ,(O)) [ P > -  2ImW.,,. (77) T,~,(q2,p • q) 

This can be decomposed into longitudinal and transverse pieces 

T~v p ~ p v ,  , 2, = ~ ~.l_(X, q ] -- g#~. tL(Z, q2), (78) 

just as for Wzv. Now, in the Bjorken limit, the Callan-Gross relation implies 
that  the longitudinal piece above vanishes. To leading twist then, just as 
for the hadronic tensor, we can decompose the transverse component of the 
Compton amplitude as 

I "  

tT=2 = Z / d a z e i q ' z C ~ ( z 2 ) z  m'''''"" < P [ O~m,...,. . [ P  > ,  (79) 
n-- - -1  

J 

where, making the analogy to Eq. 68, the coefficient functions Cn~(z 2) are 
the same for all odd values of n and zero otherwise. Also, O is the operator 
defined in Eq. 69 ~. One can define 

2n qm . . .  q.. / 
~_qi)ffi-f C~(q2 )= i . ,  d 4 z e x p ( i q . z ) z m . . . z ~ ' " C ~ ( z 2 ) .  (80) 

In general, the partial derivatives in Eq. 69 should be replaced by covaxiant 
derivatives. 
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Typically, the functions CnO(q 2) are different and are the coefficient functions 
in the operator product expansion. However, in the scaling limit, they are 
constants. Substituting the above identity into our expression for t T=2, we 
obtain 

P ' q - T = 2 ,  ~, --2q 2 ~ (2q~'~ ( 2 q m '  ~ (2qu,," ~ 
M2 ~± ix, q ) -  P'q k q2 ) k q2 ] ' " k  q2 ) 

n=l ,3  

< P I Oam'"u" I p > • (81) 

Since O is traceless and symmetric, we can again use the tensorial de- 
composition in Eq. 70. Then, since x = -q2/2p. q, we obtain 

P" q.T=2 4X Z n+l = A n + l .  (82) 
M2 ~± n----1,3 

We can determine A n +  1 by setting all the Lorentz indices in Eq. 70 to +. 
Then, 

A . + I  ( ~ + )  n+l 
= < P [ O ++'' '+ [ P > c  • (83) 

From the definition of the operator O in Eq. 69, the matrix element above is 
given, in light cone gauge A + = 0, by all two particle irreducible insertions 
of the vertex ¢?+(k+)n¢ (see Ref. [21] and references therein). 

Let us now digress a little to discuss the light cone Fock space distribution. 
We will relate it subsequently to the structure functions above. Recall the 
decomposition we had in Eq. 6 of lecture 1 of the dynamical 2--spinor ¢+.  
We can then define the light cone parton distribution function as 

dN 1 [btxbx + dtxdx] (84) 
- (2.)3 

A 

Writing this in terms of ¢+ and using the light cone identity 

we obtain 

dN 2 f dZ k - (27r)S dSxdaye-ik'C'-Y)Tr [7+S(x, y)] , (86) 

where S(x,y) = - i  < T(¢(x)¢(y)) >. The light cone distribution function 
integrated over all momenta is the function 

~ - ~  - ~ - )~ -~Tr  k)] , (87) 
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where oS(p, k) is the fermion Green's function in momentum space. We will 
now show that the function H(a) is, in leading twist, the structure function 
F2. 

Returning now to Eq. 83, we find 

1 dak + n 
An+, - (p+).+, / (2-~(k) Tr ['y+S(p,k)] . (ss) 

In terms of H(a)  then, 

£ A,+I  = da a n H ( a ) .  
o o  

(s9) 

/.From the analytic properties of the function H(a),  specifically the anti-  
commutation properties of the operators ¢7 + and ¢ on the light cone [21], 
one may conclude that H(a) = 0 for ]a] > 1. Substituting the expression for 
An+l in the transverse Compton amplitude, we obtain, 

v'qty= = )f'_ ( )  
1 n : l , 3  

(90) 

Performing the sum over n and analytically continuing t± to the physical 
region x --~ x - ie, with x real and 0 < z < 1, 

M2 = 2x da H(a)  1 1 . (91) 
1 x - a - i e  x + a - i e  

Taking the imaginary part of the amplitude to obtain the structure functions, 
we get 

F2(x) = x (H(x )  - H ( - x ) ) .  (92) 

LFrom the definition of H(x)  in Eq. 87, it is the probability to find a 
quark with momentum k + = xp + in the target. The function - H i - x  ) has 
the interpretation of finding an anti-quark with momentum k + ~- xp  + in 
the target. We have therefore, with Eq. 92, obtained the usual parton model 
interpretation of structure functions. In general, for a large but finite Q2, the 
above result can be slightly modified to read 

f Q ~  2 dN  F2(x ,Q 2) = Jo d k d -k d . (93) 

This follows simply from putting an upper cut-off Q~ on the kt integration in 
Eq. 87. Finally, we should mention that the multi-parton Fock distributions 
discussed in lecture 3 can be related by a similar analysis to the higher twist 
contributions to the forward Compton scattering amplitude [21,22]. 
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Chiral Symmetry  Breaking in Hot Matter 
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A b s t r a c t .  This series of three lectures covers (a) a basic introduction to symmetry 
breaking in general and chiral symmetry breaking in QCD, (b) an overview of the 
present status of lattice data and the knowledge that we have at finite temperature 
from chiral perturbation theory. (c) Results obtained from the Nambu-Jona-Lasinio 
model describing static mesonic properties are discussed as well as the bulk thermo- 
dynamic quantities. Divergences that are observed in the elastic quark-antiquark 
scattering cross-section, reminiscent of the phenomenon of critical opalescence in 
light scattering, is also discussed. (d) Finally, we deal with the realm of systems 
out  of equilibrium, and examine the effects of a medium dependent condensate in 
a system of interacting quarks. 

1 I n t r o d u c t i o n  

Chiral symmetry  is the symmetry of Quantum Chromodynamics (QCD) tha t  
dictates the static properties of the low lying mesonic sector, in part icular  
those pertaining to the pseudoscalar nonet (zr, K, 7)- This symmet ry  is re- 
sponsible for the fact that ,  in its broken phase, quarks acquire mass (and 
are termed "constituent" quarks, as they form parts of hadrons, while, in 
the restored phase, quarks have only their small or current mass values. It is 
believed that  at finite temperature  this symmetry is restored, a feature tha t  
is strongly motivated by numerical studies of QCD on the lattice. Concomi- 
tant ly  with this picture, it is believed that  another phase transition from a 
deconfined phase of mat ter  (consisting of a hot fireball of quarks and gluons) 
to a confined phase can occur, in which only the final state of hadrons is 
observed. Given these two features, a large amount  of scientific endeavor has 
been and will continue to be invested in the study of heavy ion collisions, in 
which high temperatures  can be attained. In particular, the low-lying mesons 
are copiously produced, and since these provide the testing ground for chirai 
symmetry  at T = 0, it is hoped that  (with enough theoretical and experi- 
mental study), a clear signal of this phase transition will emerge. To be quite 
precise, one requires unambiguous signals of both phase transitions, tha t  of 
confinement/deconfinement,  as well as chiral symmetry breaking/restorat ion.  
Thus far, however, there are no unambiguous signals known tha t  are exper- 
imentally measurable for either of these transitions. In this paper,  we shall 
confine ourselves to a discussion of chiral symmetry  and its associated as- 
pects, leaving the difficulties of confinement to a later stage. 



114 Sandi P. Klevansky 

This series of three lectures is intended to introduce the concepts of chiral 
symmet ry  starting from basics. There is a short guide for the uninit iated into 
the ideas of what symmetry  breaking is, and then an a t tempt  to summarize 
the current status of what we know to be fact, taken on the theoretical  
level, at  finite temperature.  This involves examining firstly the lattice gauge 
simulations of QCD at finite tempera ture  and then examining how far we 
can go with chiral perturbat ion theory [1,2]. From lattice gauge simulations, 
the existence of the chiral and deconfinement phase transitions is inferred. 
Critical exponents for the chiral transition have been obtained, but  are as 
yet not conclusive. Temperature dependence of the mesonic screening masses 
have also been calculated, and the question of UA (1) symmetry  restorat ion 
addressed. Bulk thermodynamic properties have been studied over several 
years, with larger and larger lattices, and this represents the s ta te  of the 
ar t  of what  we know today about  these quantities in QCD. By contrast ,  
while chiral per turbat ion theory gives a superb description of the low energy 
sector, and also gives the leading behavior expected of the order parameter  
as a function of temperature  [5,6], it cannot per se be used to describe the 
phase transit ion region, which is non-analytic. The level of accuracy of C H P T  
at finite temperatures  is illustrated in the calculation of the pion masses as 
a function of temperature  in a recent publication [6]. 

Note tha t  we restrict ourselves mainly to finite tempera ture  and not  to  
finite density. The first lattice simulations at finite density have already been 
performed [7]. However, there are many technical difficulties tha t  are not  
yet under control, and as such no results are completely reliable as yet. For 
this reason, we will also not a t tempt  to make any model discussions at  finite 
density at  this stage, although there are of course several. 

In the second lecture, a simple chiral model, the Nambu-Jona-Lasin io  
(NJL) [8-10] model is discussed, in which it becomes evident tha t  features re- 
lating to static properties of the low-lying mesons are excellently reproduced.  
This includes charge radii, meson-meson scattering lengths, polarizabilities, 
etc, and one can validate tha t  the expected results of chiral per turbat ion  the- 
ory are recovered, here with very few parameters.  In addition,-the variation 
of the meson masses with temperature,  although calculated in this model as 
pole masses, shows the same qualitative behavior as was observed by the lat- 
tice gauge groups. Given these successes with this model, one is encouraged 
to s tudy the dependence of all static mesonic properties as a function of the 
tempera ture  in order to investigate whether abrupt  behavior occurs at  the 
phase transition point. For two flavors of quarks, one finds tha t  the pseu- 
doscalar sector in particular is typified by an almost constant behavior in all 
s tat ic properties (such as the mean pion radius (r2~) 1/~, the polarizabilities 
a .  and the scattering lengths a . )  for a wide range of the tempera ture  short ly 
up until the point at which the chiral phase transition occurs, and then these 
quantities show a sharp divergence. This is true for the case in which the 
current quark mass of the up and down quarks m s = m o  d = m o  -- 0, and a 



Hot Chiral Symmetry Breaking 115 

phase transition can occur. When m0 ~ 0, only a crossover can be observed 
in the order parameter. A new transition temperature TM -- TMott is defined 
as being the temperature at which the mesonic states become unbound, or 
resonances. It thus respresents a delocalization of the mesons, rather than 
their deconfinement. The static properties of the pionic sector then remain 
constant for most of the temperature range, and diverge at the Mort tem- 
perature. One thus still observes a dramatic structure - either directly at the 
phase transition temperature itself in the case of m0 --- 0 or at T = TM for 
m0 ~0. 

It is also extremely interesting to study dynamical quantities such as the 
elastic cross-section for qc7 ~ q~ scattering. This particular quantity displays 
a divergence at the critical or Mort temperature in a similar fashion as occurs 
in the phenomenon of critical opalescence that is observed in the scattering 
of light. However, although this feature and those observed for the static 
properties are exciting, their direct measurement is elusive if not downright 
impossible. 

The scalar mesonic sector within the NJL model is observed to display 
a completely different behavior. Here the mass drops relatively quickly with 
temperature. Nevertheless, experimentally, the scalar mesons constitute a 
multiplet that appears to have the symmetry badly broken, and the lowest 
meson of which (the #) has an extremely large width. Consequently only 
indirect information on this sector is useful. 

How then can one hope to observe the chiral phase transition? To attempt 
to answer this question, we recall that the chiral phase transition appears to 
be intimately linked with the confinement/deconfinement phase transition, 
i.e. they appear to take place at the same temperature [11]. A heuristic un- 
derstanding of this feature is quite satisfactory - it implies that at high tem- 
peratures, one should have chiral symmetry restored in a plasma phase, with 
free (current) quarks and gluons being the ingredients, while at T <~ To, the 
confined phase contains only hadrons that are made up of constituent (mas- 
sive) quarks. Experimental effort to detect the quark-gluon plasma phase is 
concentrated on contructing hot and dense matter via heavy-ion collisions 
such as Pb + Pb at increasingly high energies, and will form a main part 
of the program of the two accelerators RHIC at Brookhaven and the LHC 
(Geneva) that are currently under construction. Given the fact now that 
heavy-ion collisions take place over a small time scale, it is conceivable that 
the features of divergences occurring in both static and dynamical quantities 
might enter realistically into a non-equilibrium treatment of such collisions, 
which of course involves many particles, the lightest of which are the pious, 
and thus to measurable observables. 

For this reason, the final lecture is devoted to a discussion of non-equi- 
librium physics of an interacting fermionic Lagrangian, and which is then 
applied to the Nambu-Jona-Lasinio model in the lowest possible terms in 
an appropriate doul~le expansion in both h and the inverse number of colors 
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Nc [12,13]. Using the simplest approximations that lead to a semi-classical 
result, one can recover a Boltzmann like equation for the quark distribution 
function. Here one sees that the problems are simply open ended. The issue 
of constructing interlinked equations dealing with several species of particle 
must be confronted and the issue of multiparticle production (hadronization) 
must be addressed, since the usual Boltzman collision scenario that incorpo- 
rates only binary collisions is inadequate for a relativistic description. 

Obviously it is an impossible task to discuss all aspects of chiral symme- 
try breaking and restoration within three lectures, and for this reason I have 
been highly selective in the material presented. There are many, many studies 
in the literature involving chiral symmetry, and I am in no way attempting in 
this paper to be comprehensive. The interested reader may also refer to the 
work of Refs.[14] for treatments of the linear sigma model at finite tempera- 
ture, for example, and to the work of Ref. [15] for discussions in the baryonic 
sector, in addition to the other general references that are given in the text. 

The structure of this manuscript reflects the three lectures directly: in 
Section 2, current factual information on the chiral transition, taken from 
lattice gauge simulations and chiral perturbation theory is presented. In Sec- 
tion 3, the Nambu-Jona-Lasinio (NJL) model is used to present the rami- 
fications of symmetry breaking at the critical temperature. In Section 4, a 
non-equilibrium formulation of a theory of interacting fermions is described 
and the equations are investigated for the NJL model. In the concluding sec- 
tion, we discuss where this could possibly lead to observable consequences. 

2 Equilibrium Thermodynamics 

In this section, we attempt to present those aspects of chiral symmetry at 
finite temperature that are regarded as being "exact" or factual, that is to 
say, they are derived from QCD itself, or from considerations thereof. We 
start by briefly introducing the reader to the general concept of symmetry 
breaking at T --- 0. Following this, chiral symmetry breaking in the QCD 
Lagrangian is analysed. In the following subsection, the simulations of lattice 
gauge theory are discussed, dealing firstly with the temperature dependence 
of the order parameter, the critical exponents obtained at the phase transi- 
tion, meson screening masses and the question of whether UA(1) symmetry 
is restored at high temperatures or not. Secondly, we indicate what is known 
from the lattice about bulk thermodynamic properties. The pressure den- 
sity, energy density and entropy densities have been calculated on the lattice. 
These quantities give rather indications of the confinement/deconfinement 
transition, and as we will show in Section 3, cannot be described well by a 
model that contains chiral symmetry alone, and which ignores the confine- 
ment aspect. 

In the final subsection, we briefly introduce the concepts of chiral pertur- 
bation theory (CHPT) and we describe the state of the art results at finite 
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temperature. As will be seen, these give an important functional dependence 
at low temperatures, but cannot be expected to cope with the phase transi- 
tion region, which is non-analytic. 

2 . 1  I n t r o d u c t i o n  t o  C h i r a l  S y m m e t r y  a t  T - -  0 

The fact that a Hamiltonian, or equivalently a Lagrangian, is invariant under 
a symmetry transformation results in a degeneracy within the spectrum that  
is observed. Mathematically, one expresses the fact that a Hamilton function 
H is invariant under a specific symmetry via the statement 

U H U  t = H (1) 

where U is an element of the group corresponding to this symmetry. Now if 
one considers the states IA) and IB) that are related by the transformation 
U, 

l B) = UIA), (2) 

it follows that IB) and IA) are degenerate, since 

EA : (AIHIA) : (BIHIB) : EB. (3) 

In order that this degeneracy manifest itself, however, it is necessary that the 
ground state of the system be invariant under such a transformation. Writing 
IA) and IB) in terms of creation operators, 

[A) = CA[0) and [S) = CB[0) (4) 

with 
U~AU t = ~ , ,  (5) 

one sees that Eq.(2) holds only if 

I 0) = Vl0 ), (6) 

i.e. the ground state is invariant under the symmetry group. Should this not 
be the case, one speaks of a spontaneously broken symmetry. 

Denoting U as U = exp(iEaQ a) in terms of the (continuous) group pa- 
rameters e a and the generators of the symmetry 

= / d3xJ~(x), (7) Qa 

the statement Eq. (6) is seen to coincide with the equivalent form 

Q~I O) # 0 (8) 

although 
[Q", HI = 0. (9) 
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The direct consequence of this statement is that HQ"[0) = O, or that  there 
must exist a spectrum of massless particles with quantum numbers specified 
by the generators of the symmetry. This constitutes the Goldstone theorem. 
To be more precise, one can formulate this as follows: given that  a Hamil- 
tonian has continuous symmetries described by groups G1 requiring NG1 
generators, while the ground state is invariant under groups G2 requiring 
NG2 < NGI generators, the spontaneous breakdown of chiral symmetry leads 
to the existence of NG~ - NG2 Goldstone bosons [16]. 

Let us investigate now how this is applied to QCD. 

2.2 Chi ra l  S y m m e t r y  in QCD 

In this section, we analyse the symmetries of quantum chromodynamics, and 
compare this with the symmetry of the vacuum, determined purely by viewing 
the experimental spectrum. Start by examining the QCD Lagrangian itself, 
which can be written in a compact fashion as 

1 {~ v 
f-QCD ---- ¢ ( i  ~ -- m0)¢ -- ~trcG,~G"~ , 

where G ~  is the field strength tensor of the gluon field, 

a _ - -  gf~bcG#Gv ' el~v ~ ~ljGa OvGa b c 

D ~ is the covariant derivative, 

D~, = O. + ig (~A . )G~ , (x )  

(lO) 
(11) 

(12) 

and f .bc are the structure constants of the symmetry group SU(3) [17]. The 
quark field is a vector in flavor space, 

¢. (x)) Cd(X) 
%0 ---- %b, (x) (13) 

and the (current) quark mass matrix is a diagonal matrix in flavor space, 

mo = diag[m~, m0 d, m~,...], (14) 

so that the second term in Eq.(10) is 

 m0¢ = mg fCf. (lS) 
f 
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If the quarks are massless, then the Lagrangian Eq.(10) contains no term of 
the form Eq.(15) which can mix left and right handed components of the 
quark fields, that are defined as 

CR,L • 1( 1 -4- 75)¢, (16) 

i.e. these two fields are independent, and the Lagrangian remains invariant 
under transformations that individually transform these fields, 

CR,L --~ UR,L¢, UR,L E U(NI), (17) 

and these are called chiral symmetries. However, a mass term of the form 
Eq.(15) spoils this invariance since 

Terms ~ ¢ ¢  = ~.)LCR "~- ~RCL (18) 

mix left and right handed fields. Thus the term m0¢¢ constitutes an explicit 
symmetry breaking. 

The QCD Lagrangian Eq.(10) is invariant under several transformations, 
such as 

¢ -*  ¢ '  = 

¢ --~ ¢' = eia~'¢ (19) 

etc. Accordingly, there are conserved Noether currents that correspond to 
these symmetries. They are 

V0 ~ = ¢~"¢  A~ = ¢ ~ " ~ ¢  (20) 

Among these is the current A~, which corresponds to the transformation 
¢ --+ ¢ '  = exp(i75a)¢, where a is a continuous parameter. However, despite 
its appearance, this current is not conserved, 

. o N c  - ~ ,  (22)  0 A~ = ~ t r c G ~ v G  ~ . 

This means that it does not reflect an underlying symmetry of the Lagrangian 
and its breaking was resolved by 't Hooft as being due to the presence of 
instantons [18]. 

One may thus identify the (continuous) symmetry groups of QCD as being 
generated by the charges of the remaining symmetries, and this is 

GI = SUL(NI) @ SUR(Nf ) ® Uv(1). (23) 

On the other hand, by examining the particle spectrum that is observed 
experimentally, one finds that the symmetry of the vacuum is 

G2 = SUv(N I) ® Vv(1). (24) 
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Accordingly, there must be N] - 1 massless Goldstone particles and these 
have the quantum numbers obtained from applying the axial charge operators 
to the vacuum, i.e. jR  _ O- .  In the case of two flavors, there are three such 
states, which are identified as corresponding to the charged and neutral pions. 
For three flavors, one identifies the eight pseudoscalars as the pions, kaons 
and eta. One sees that the explicit symmetry breaking in this case is larger: 
rn~ ~_ 150MeV in comparison with m s ~_ m0 d _~ 5 MeV. 

The phase in which a system finds itself is usually characterized by an 
order parameter. This is an operator that transforms in a non-trivial fashion 
under the broken symmetry. Generally order parameters have the property 
of being zero in the symmetric or restored phase and non-zero in the sponta- 
neously broken phase, but this is not necessarily so. There are many possible 
ways of choosing an order parameter. The major criterion for doing so is 
that the order parameter should display that same invariances as the ground 
state. In the case of quantum chromodynamics, the ground state of QCD is 
invariant under Lorentz transformations and spatial reflections. The order 
parameter must thus be invariant under these same symmetries, and as such 
must be a scalar. The operator 2¢  is the simplest choice. One thus makes 
the choice of (¢¢),  which is referred to as the quark condensate. 

2.3 Lattice Gauge Simulations 

Simulations of QCD on the lattice provide the most exact knowledge that  
we have of this theory that is derived from the QCD Lagrangian itself. The 
Lagrangian is discretized in space and time dimensions, and the variation 
with respect to the temperature of physical quantities is formally controlled 
by varying the size of the lattice in the temporal direction [3,4], since 

T--- 1/Nra, (25) 

where a is the lattice size and Nr the temporal extent. In what follows, we 
simply list the major results that have been extracted via this methodology 
over the past few years. We show the temperature dependence of the chi- 
ral and deconfinement order parameters, discuss critical exponents, meson 
screening masses and UA(1) resotration. Finally, we show plots of the bulk 
thermodynamic quantities. 

O r d e r  p a r a m e t e r s  The following recent results [3,4] have emerged from 
the lattice gauge studies: 

• The pure gauge sector of QCD displays a well-established first order chiral 
transition at a rather high critical value of the temperature, Tc = 270(5) 
MeV. The bulk properties for such a system are also well known [19]. 

• Full QCD including fermions displays a chiral phase transition at far 
lower critical temperature than that observed for pure gluonic systems. 
One finds Tc ~- 150 MeV for two flavors of quark. 
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• Studies of the Polyakov loop for quenched QCD places the critical tem- 
perature determined from the order parameter for deconfinement, TD at 
about the same temperature at which the chiral transition Tc occurs [11], 
i.e. 

TD "~ Tc (26) 

This can be directly seen from Fig. 1, in which the order parameter for the 
chiral and deconfinement transitions are shown, together with their suscep- 
tibilities, as a function of/~ = 6/g  2, over the transition region. Large (small) 
values of/~ represent the high (low) temperature regime. 

Based on these points, our physical (but heuristic!) understanding of the 
situation is that, at low energies, one has only hadronic states. These can be 
thought of as consisting of quarks carrying a dynamically generated quark 
mass m : rnu = rnd for two flavors, and constructed into baryonic states 
or mesonic states according to the Goldstone theorem. At the temperature 
at which where chiral symmetry is restored, To, and the constituent quarks 
take on their current mass value, deconfinement occurs simultaneously. The 
hadronic states dissolve, and one moves to a plasma containing only quark 
and gluonic degrees of freedom. 

Critical Exponents An obvious question that one may pose, when faced 
with a phase transition, is what are the critical exponents that govern the 
transition? Pisarski and Wilczek suggested that the dynamics of QCD is 
controlled by an effective scalar Lagrangian, constructed along the lines of the 
linear a model I21], and, which for two flavors of quarks, has SU (2) ® S U  (2) = 
0(4) symmetry. Now, according to arguments of universality [22], only the 
symmetry structure and dimensionality determine the values of the critical 
exponents, i.e. one expects that one should obtain the critical exponents of a 
3D 0(4) symmetric spin model. The task of studying the critical exponents 
has been undertaken by a lattice group [4]. Noting that the masses, which are 
responsible for explicit chiral symmetry breaking, play an analogous role to 
that of a magnetic field in the superconducting transition, these authors [3,4] 
have adopted the convention of defining a scaled quark mass as h ---- rnq /T  
and the reduced temperature t -- (T - Tc)/Tc. With this convention, the free 
energy density scales as 

T 
f(t ,  h) --- - ~ In Z = b -1 f(b ~' t, b ~ h), (27) 

introducing the thermal (Yt) and magnetic (Yh) critical exponents. Here b 
is an arbitrary scaling factor. There are various scaling relations that  can 
be derived using Eq.(27). In particular, one can show that  the chiral order 
parameter scales as 

(¢¢~(t, h) = h l /6F(z ) ,  (28) 
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Fig. 1: Order parameters for the chiral and deconfinement transitions (lower and 
upper figures, respectively) are plotted as a function of the inverse QCD coupling 

= 6/92. High (low) values of/3 correspond to high (low) values of the temperature. 
The associated susceptibilities are also plotted in each case. Courtesy of [20]. 

with z = th  1/n6, and the chiral susceptibility, defined as Xm ( t, h) = O( ~b¢ ) / Om, 
via 

Xm( t , h )  = ~ h } - l [ F ( z )  - ~F ' ( z ) ] .  (29) 

The more familiar critical exponents 6 and/3  are related to y~ and Yh via 

/3 = (1 -- Yh) and ~ _~ Yh . (30) 
y~ 1 - Yh 

The heights of the peaks of the susceptibilities scale themselves with the 
behavior 

x p e a k  ~ m-Z,~ and . p e a k  ~ m - Z , ,  (31) 
m X t  
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with z,n : 2 - 1/yh and zt = (Yt - 1) /yh + 1. 

123 

083 045  
0.83 0.50[0.79 0.39[ 

[MF 3/4 1/2~2/3 1]3~ 

Table 1: Critical exponents for 0(4), 0(2) and mean field theory (MF). Taken from 
[4]. 

The expected values for the critical exponents for the case of 0(4) sym- 
metry, 0(2) symmetry, and mean field exponents (MF) are listed in Table 
I, in the form of Yh, Yt, and the corresponding values of zm and zt. The 
0(2) symmetry exponents are also listed, because at finite lattice spacing, 
the exact chiral symmetry of the staggered fermion action is U(1) ~ 0(2). 
Only sufficiently close to the continuum limit does one expect to find 0(4) 
exponents. 

The calculated results for the exponents themselves, evaluated on different 
spatially sized lattices, are summarized in Table 2. Comparing Tables 1 and 
2, one sees that at this stage, no definitive statement about the symmetry 
of the underlying Lagrangian can be made from lattice gauge theory. This is 
an indicator that vital study in this field is still necessary to determine the 
underlying symmetry group conclusively. It is probably necessary to increase 
the lattice sizes and move to smaller masses. 

I [ 8~ 123 16~ 
zm[0.84(5) 1.06(7) 0.93(8) 
zt 10.63(7) 0.94(12) 0.85(12) 

Table 2: Critical exponents, as a function of the lattice size. Taken from Ref.[4]. 

M e s o n  Screening Masses and  UA(1) R e s t o r a t i o n  One of the ques- 
tions that has raised some theoretical interest in the last few years is whether 
the UA(1) symmetry, i:e. the symmetry ¢ -~ eiaXs¢, which leads to the non- 
conserved current  A~ that is given in Eq. (20) is also restored at finite temper- 
ature, at some point. For three flavors, this occurs trivially. A demonstration 
of this, following Ref.[23] is given. 

In SU(3), the statement that UA(1) is restored, implies that  mr  -- ran,. 
Since the masses of the particles are determined from the vacuum expectation 
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values of the appropriate meson-meson correlators, we need to show only that  

(~ba(x)~ba(O))-- (@o(x)~o(O)), (321 

where ~b3(x) -- @(x)i'yhA3¢(x) is the correlator for the 7to and Co(X) ---- 
~i9'5)~o~b(x) is that for the ~f. If one considers the specific axial transfor- 
mation 

¢ ( x )  ~ ¢ ' ( x )  = eiT~('¢'5)~s-'~8)']'¢(:z), (33) 
then, after a little algebra, one finds that the composite fields transform as 

 3(x) --, #3(x)  = (x) + Cs. (34) 

The correlator composed of these composite fields itself then transforms as 

(q,3 (o)) (#3 (:0#3 (o)) 

(35) 

The last two terms of this expression vanish, since the system is assumed to be 
S U v  (3) symmetric. In addition, this implies that (~b3 (x)¢3 (0)) = (¢s (x)Cs (0)), 
so that  Eq.(35) implies that  

(¢0(~)(~)0(0)> = (~3(2~)¢3(0)), (36) 

or that m r, ---- m , .  
In retrospect, it is simple to understand why the symmetry must be re- 

stored. Noting that mathematical constructions containing traces of fields 
preserve the symmetry, while determinants or antisymmetric functions vio- 
late it, one sees that the lowest order combination of fields that would violate 
UA (1) would involve the completely antisymmetric tensor, and consequently 
contain three field combinations. Since one requires here only two field oper- 
ator combinations in order to construct a meson-meson correlator, this must 
be UA (1) invariant in the chirally restored phase. This leads to the definitive 
statement: for n < NI, all n-point functions in the chirally restored phase 
are UA (1) invariant. 

From the previous argument, it is evident that in SU(2) the situation is 
more complicated. There are two independent chiral multiplets in this case: 
(a, lr) and (~', a0). In lattice studies, the behavior of the masses of the ~ and 
the a0 have been calculated. Here the integral over the correlators has been 
studied, 

---- ] d4x(¢i (x)¢i (0)) (37) XM, 
J 
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Fig. 2: Meson screening masses plotted as a function of ~ = 6/g 2. The critical value 
/~ =/3c is indicated by the vertical line. 

for Mi = 7r or a0, and the leading behavior of these correlators is assumed 
to  be XM~ N m -2 A plot of the "screening masses" obtained in this fashion Mi" 
is shown in Fig. 2 as a function of 6/g 2, with g the coupling in the QCD 
Lagrangian, which again represents increasing tempera ture  over the region 
of the phase transition. It is interesting to note tha t  the 7r and a have become 
degenerate: in this picture, this occurs at some tempera ture  slightly larger 
than  To, with the a undershooting the ~ curve and approaching it from be- 
low. Th a t  the a meson undershoots the 7r curve is not expected from model 
calculations and may be a lattice artifact. This will be discussed in the fol- 
lowing sections. One sees in Fig. 2 tha t  the mass of the other  scalar, the  ao, 
drops with temperature ,  but  not as drastically as does the a. One observes 
tha t  it does not become degenerate with the ~r and a over the t empera tu re  
range indicated. Thus it does not appear  from this particular calculation tha t  
UA (1) symmetry  is restored in SU(2). An alternate approach, however, using 
the scaling arguments of Brown and Rho [24], does however indicate a de- 
generacy at the transit ion temperature  [4]. Thus, in this section once again, 
the question of the restoration of UA (1) symmetry  is not  resolved. 

B u l k  T h e r m o d y n a m i c  Q u a n t i t i e s  One of the most impor tant  contribu- 
t ions tha t  lattice physics is able to  provide are calculations of bulk thermo-  
dynamic quantities. In particular, the energy density and pressure densities 
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are given by 

and 

T 2 c9 
e -  V cgT lnZ  (38) 

# 
p = T~--~ In Z (39) 

in terms of the partition function Z. In practice [25], the pressure density is 
obtained from integration of the difference of the action densities at zero and 
finite temperature, 

P ~ 4 ~  B 
"~-¥[~o = N• dE(So - -  ST). (40) 

0 

Note that this quantity is defined in such a way that p/T4=o : 0, in contrast 
to setting the usual thermodynamic limit of Nernst, i.e. the entropy S(T = 
0) = 0 [26]. While this does not affect anything that follows, one should bear 
this in mind when making model comparisons, as will be done in Section 3. 

In the following figures, we have chosen to illustrate the pressure and 
energy densities for lattice simulations that include quark degrees of freedom, 
rather than simply quenched QCD. In Fig. 3, we show the pressure density, 
plotted as a function of the scaled temperature, for four flavor QCD on a 
163 x 4 lattice. A comparison is made on varying the quark masses, and using 
quenched QCD, in the latter case with appropriate scaling of the number of 
degrees of freedom. One sees that there is a sharp rise in the pressure density 
at T = Tc, and the curve tends to the Stefan-Boltzmann limit, but does 
not reach it over the temperature range (3.5Tc) shown. The deviation from 
the ideal gas limit appears to be too large to be described by perturbation 
theory, suggesting here that the perturbative regime occurs for temperatures 
T > >  Tc. 

The energy density of four flavor QCD on a 163 x 4 lattice is shown in 
Fig. 4. In this case, the energy density remains close to the ideal gas limit at 
temperatures of the order of 3Tc, but overshoots it and approaches it from 
above for finite values of the quark mass. Whether this is a lattice artifact or 
not is presently unclear. 

In concluding this section, we see that lattice gauge simulations are reach- 
ing a point where one may obtain "exact" results that stem directly from the 
discretized QCD Lagrangian. These can be used as a guide for constructing 
simple models, and conversely, simple models and simple predictions based 
solely on symmetry considerations such as discussed here x may be used as a 

1 Chiral random matrix theory [27] also falls into this category. 
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Fig. 3: Pressure density, plotted as a function of the scaled temperature T/Tc. 
(Taken from [3].) 
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Fig. 4: Energy density plotted as a function of the scaled temperature, T/Tc. (Taken 
from [3].) 

guide for the interpretation of the numerical results. As has emerged here, 
there are still many questions tha t  are open for study. 

With this, we turn to a different approach which is regarded by its pro- 
tagonists as being an exact low energy representation of QCD, viz. chiral 
per turbat ion theory and investige what is known at finite temperature .  
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2.4 Chi ra l  P e r t u r b a t i o n  T h e o r y  

A B r i e f  I n t r o d u c t i o n  Chiral perturbation theory starts with the premise 
that  an effective Lagrangian for QCD at low temperatures can be written 
solely in terms of the observed baryonic (here mesonic) degrees of freedom, 
in such a way that global chiral symmetry is enforced. This is done in its 
most general form by collecting the mesonic degrees of freedom into the field 

U(x) = exp(i~rava/F), (41) 

where 7r a are the SU(2) pion fields, Ta the Pauli matrices, and F the pion 
decay constant, and contructing a Lagrangian density that is ordered in mo- 
menta. Such an expansion for the Lagrangian only starts at O(p2), and must 
contain an even number of derivatives in order to be Lorentz invariant. Writ- 
ing 

rC2) r(4) rCe) 
£QCD --')" •eyf = '~"eff + " ' e f f  + ~"eff + " ' ' '  (42) 

the lowest leading order term is 

(2) IF2tr(O~UO,Ut), (43) ey/ = 

which, taken on its own, is the (non-renormalizable) sigma model. QCD, as 
we have already discussed, is however not completely invariant under chiral 
symmetry. There is an explicit breaking of the symmetry due to the presence 
of the current quark mass matrix. The symmetry breaking term is in general 
given as 

~'sb = f ( U ,  O U , . . . )  × m O, (44) 

where m ° is the (real and diagonal) current quark mass matrix. One incorpo- 
rates this into the effective Lagrangian by making not only an expansion in 
powers of the derivatives, but also in powers of m °, i.e. £eb ~" f(U) × rn ° to 
leading order. More precisely, this term takes the form (that is Lorentz and 
parity invariant) 

1 

£8b = 2 F2Btr(m°(U + U?)), (45) 

introducing the new constant B. This is generally included in the definition 
of i.e. 

£(2) IF2tr(O, Ucg"U t) + 1F2Btr(m°(U + U?)). (46) 
e l f  ~- 

In this reckoning, one can thus regard m ° as being of OCp2). 
To make physical sense of the constant B, one may expand the field 

U --- exp(iTr- v/F)  in powers of the pion field It. The symmetry breaking part 
of the Lagrangian then becomes 

1 ,  1 
£,b = (m ° + m°d)B[F 2 - ~Tr + r 4 F  -2 + . . . ]  (47) 
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The first term in this expansion gives the vacuum energy generated by the 
symmetry breaking. The second term generates the pion mass, while the 
higher order terms describe further interactions of the 7r fields. By direct 
analogy with the QCD I-Iamiltonian, we know that the derivative of HQCD 
with respect to m ° generates the operator ~u. Thus the derivative of the 
vacuum energy with respect to the current quark mass gives the vacuum 
expectation value of this operator. Applying this to £eH, one has 

(01fiul0) = (01dd[0) = - F 2 B { 1  + O(m)}, (48) 

indicating that B is related to the condensate. Since the pion mass is given 
a s  

2 0 too)B{1 (49) m .  = (m.  + + O(ra)}, 

one obtains the Gell-Mann-Oakes-Renner (GOR) relation [28], 

2 2 0 F~rM ~ = (m,~ + rn])l(01~ul0)l (50) 

from Eqs.(48) and (49), on eliminating B. 
To order p4, the effective Lagrangian would contain two additional inde- 

pendent terms in the event that no current quark mass were present, i.e. one 
would include two new terms 

£(4).ff : ll,(tr{Ouutouu})2 + ~12tr(OuutovU)tr(OuUtOvu). (51) 

with new low energy constants 11 and/2. Including the current quark mass 
matrix again to construct an explicit symmetry breaking terms requires the 
inclusion of further additional terms, as was the case for £(2) For most ell" 
purposes, this is sufficient. However, to obtain the most general form from 
which all propagators can be derived, it is useful to introduce external fields 
into the Lagrange density. Here the essential additions are v u (x) and a u (x) 
that are vector and axial vector in nature and which can be regarded as being 
of order p. Then, using the original notation of Ref.[1], the complete set of 

terms that contribute to £~4;! were worked out by these authors and found 
to be, for SU(3) 

(4) = LI(v.utv~,U)2 + L2(V~,UtV.U)(Vuutv~u) eli 
+ L4(xU t + xtu)(vutvuu) + L6(xU t + xtu) 2 

+ Ls(xUtxU t + UxtUx +) + Lxo(UtF~UUFLuv) 
+ H,(F~FR.~ + F~FLuv + H2<XtX) + LT(xU' - UX?) 2 
+ Ls(V~UVuUt(xU t + UX?)) + iLg(FLvVuVvU t + Fy~VuV~U) 

+ L3(VuUV"UtV~,UV~.U t) (52) 

where using a different notation to Eq. (51) now, the low energy constants 
L1 to Lxo, and HI and/ /2  have been introduced. The angular brackets are 
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a shor thand notat ion for the trace. In this expression, one notes tha t  the 
covariant derivative that  is constructed using the external field must now 
appear,  

v .  = 0 .  - q a . ,  v } ,  (53) 

and F "~ is the field strength tensor constructed from the external  field, i.e. 

~ v  
F~, L = :i:O"a ~ ~: O~ a ~ - i[a ~, a~]. (54) 

Terms involving the current quark mass have been summarized into the field 
X = 2 B ~ ,  with ~ = (rn~ + redo)~2. Note that  the low energy constants Li 
become renormalized when physical quantities are calculated, as this theory  
is per turbat ively renormalizable order by order. A certain number of such 
physical quantities tha t  are measured in experiment must then be used to fit 
the renormalized parameters at a given mass scale. Given definite values for 
these constants, predictions of other quantities can then be made. 

Three  ingredients are essential to any application tha t  a t tempts  to  calcu- 
late quantities for chiral perturbat ion theory to a specific order. For example, 
should one wish to calculate to O(p4), the following steps must be taken: (1) 

The general r(2) of order p2 is to be used at  both  the tree and one loop " e l l  
level. (2) The general £(2) of order p4 is to be used only at tree level. (3) A eli' 
renormalization program must be implemented to make physical predictions. 
The  extension of this procedure to higher powers in p~ is obvious. 

Let  us look at a s tandard example for the derivation of the pion mass [29]. 
In what  follows, we denote the low energy constants appropriate to SU(2) 2 

two flavors as being L~ 2). If one expands the Lagrangians ~.(2) and c(4) in 
~-'e i '  i '  ~"~ e i '  i '  

terms of the pion fields, one finds 

2 2 m2 
"~ f i '  r(~) = 5[O"~O~ ~ - m  ~ ' ~ ] + ~ - ~ [ ( ~ ' 0 " ~ 1 ( ~ ' 0 , ~ 1 - ( ~ ' ~ ) ( 0 " ~ ' 0 , ~ ) ]  +O(~6) ,  

(55) 
while 

L(4) rn2rlar(2) 8L (2)]10"7r. O"Tr 
e l f  = 2 "~ - "  t ~ ,a.L,' 4 + 

16L(2h 1 ^ 2 8 • (56) 

The  terms in r(4) tha t  are of order 7r 4 contribute to physical quantities 
via one loop diagrams and one therefore does not  need to consider these 
in a calculation to order O(p4). What  is required however, are the one loop 

diagrams tha t  are generated oy ~ ~eyi'(2) For a calculation of the the renormalized 
pion mass, however, one can avoid evaluating any diagrams at all by simply 

2 These can be simply related to the Ii of Eq. (51), and the reader is referred to 
[2] for explicit details. 
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considering all possible contractions of two fields in these terms in r(4) to "~el/' 
arrive at an "effective" effective Lagrangian, that takes the form 

""e[.fP(4) : 70 ~. O~,~r - lm21r. ~ r 2  + I C m 2 ) I r ' I r  

1 
+ ~-#-~(~k~j, - ~ . ~ , ) I ( m ~ ) ( ~ O " ~ O : ,  + ~,m~':'~) 

1 m~_ :o 1 ..._ ~9 rn 2 
+ -O"rcO"~r"[16L4")2 F~ + 8L(2)] - 7mn~r . 2  r ~_~ [32L~-)~  + 16L(2)]. 

In obtaining this result, the Feynman propagator 

i a ~ k  (0) = (01~j (~)~k (~)10) = ~kI(m~) 

has been introduced and is written in terms of the integral 

I(m~) = .4-d [ ddk ~ = .4-d(4.)d/2F( 1 _ d)cm~)~- i  
(27r) d k 2 m 2 J Z 

(58) 

(59) 

that is treated with dimensional regularization, d being an arbitrary dimen- 
sion. In addition, use has been made of the fact that derivatives of the Feyn- 
man propagator, defined as 

--O.OviZ~Fjk(O) = (OlO:u(x)O:h(x)lO) = 6ijI~,~(m~) (60) 

can be expressed in terms of the integral I(m~) via 

f ddk i m~ 2 i~(m~) -~-~k~,k~, k2 _ m~ -- g~'~ - d  - l ( m ' r ) "  (61) 

Regrouping the kinetic and mass terms, Eq.(57) becomes 

1 ~ 2 ~el! 70 ~r. O.r[1 + (16L (2) J- ~r.(2)~m~ -- l(m~)] 
= " v ~ 5  J~nn 3 

1 2 (32L~2) 16L~2))_ ~ I 2 - 7m 7r. lr[1 + + F~ 6F~ I ( m . ) ] .  (62) 

By expanding this expression in powers of d - 4 and renormalizing the pion 
field as rr = Z~l/2~r, with 

2 2 2 
Z ~ = l - 8 m ' : g r ( 2 ) + L ~ 2 ) ) +  m~ ~ rn. 

- ~ - , ' ~ 4  247r2-----~2 [ + 7 - 1 -  ln47r + In-~-T], (63) 

one obtains the canonical form for the effective Lagrangian for pion fields, 

1 ,~ 1 2 F-.el! = 7O~,lrrO 7r,- - 7M~.~'r "Trr, (64) 
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with the identification of the physical pion mass as 

2 2 2 
8 m , ~  _ . 

m,r mlr ~ Lcombl" M~ = m211 + 32-~-F, 2 In ~-~ (65) 

9r.(2)r~_r(2)r Ar(2)r 9r(2)r Here Lcomb = "~4 n- ~5 - - '~ '6  - "~'s . In the original paper of Gasser 
and Leutwyler [1], M~ was not obtained in this fashion, but rather from the 
expansion of the Fourier transform of the axial vector correlator, which has 
the form 

f 
" /  " - -  ' ik d4se,pO, v) J~,, (p) = z (O[TA~ ( x )A~  (y)]0) 

d 

F. 2 
- L M ~ - 2 9  2 + ' " } ,  

(66) 

where A ~ ( x )  - r'  = ¢(x)7~%~-¢(x).  From this expression, the corresponding 
expansion for F .  has also been obtained. 

Cool  Chi ra l  P e r t u r b a t i o n  T h e o r y  The evaluation of the condensate den- 
sity at finite temperature was first carried out by Gerber and Leutwyler [5]. 
In their calculation, which involves r(2) and r(4) they find that the first " ' e l i  ""e l f '  
term in the behavior of the condensate with temperature is quadratically 
decreasing, i.e. 

(ffq) - (OlqqlO)T=O[1 
T 2 T 4 T 6 Aq 

8F 2 384F 4 288F----- ~ In ~ -  + O(TS)] .  (67) 

This is a result that has been obtained under the assumption that quarks 
are massless, i.e. in the chiral limit. Aq is a scale factor constructed from 
the renomalized low energy constants, and is expected to be of the order of 
Aq -- 360..580 MeV. 

In a recent publication, Toublan [6] has investigated pion static properties 
with the aim of obtaining O(p 6) accuracy in all quantities and to then verify 
the Gell-Mann-Oakes-Renner (GOR) [28] relation at finite temperature. To 
do so, the tree, one loop and two loop diagrams of f(2) "~ef! are required, the 

tree and one loop graphs of /.(4) " e l l  are required plus the tree level graphs of 

:(6) In doing so, the result of Eq.(67) has been reconfirmed. In addition, ell" 
the mass M~r(T) and pion decay constant as a function of temperature are 
also evaluated, using the finite temperature axial vector correlator. In total, 
thirty-six Feynman graphs contribute to the correlator at this order! However, 
in the chiral limit, one is still lucky enough to have simple analytic forms for 
the temperature dependence. One finds 

M ~ ( T )  T u T a 
M. = 1 + 24F----- ? 36Fa In + O(TS), (68) 



Hot Chiral Symmetry Breaking 133 

while 

and 

Re[Ft,(T)] 2 T 2 T 4 AT 
F~ I,~=0 = 1 - ~ + ~ In ~-- + O(Te). (69) 

Re[F~ (T) - F~ (T)] T 4 
F ,  I~=0 = 27F4 In A a T  + O(T6), (70) 

where AM,T,$ are various scales, whose sizes are determined by the renormal- 
ized couplings L~. . .  L~0 that are a function of scale. They are determined 
numerically to be AM "~ 1.9 GeV, AT "~ 2.3 GeV, and Aa = 1.8 GeV. Note 
that, at finite temperature, there is a separation of "temporal" and "spatial" 
pion decay constants. This comes about since Lorentz invariance is not main- 
tained in a heat bath and the the singular part of the axial two point function 
takes the form 

A,~ (q, T) = 

where 
fo(q, T) = qoF,(q, T) 

f . (q ,T) fv (q ,T)  
_ (q, T) (71) 

f i(q,T) = qiF,(q,T), (72) 

with i = 1..3, and the decay constants F~ ,t are defined as 

F~'*(T) = F,,t(q, T)lq=0. (73) 

The GOR relation is modified so as to read [6] 

M~(T)Re[F~(T)] 2 
lim = -1  + O(Te). 

Th~O r?t(qq)T 
(74) 

For this reason, we show graphs for M~(T)/M~ and Re[F~(T)]2/F~, as a 
function of temperature in Figs. 5 and 6. The tree level result is given (dot- 
ted curve), together with the one loop computation (upper dashed line in 
Fig. 5, lower dashed line in Fig. 6) and the two loop approximation (solid 
curve). In both of these figures, a non-zero value of the quark mass has been 
assumed for these curves. In the chiral limit, one finds the lower (upper) 
dashed curve in Fig. 5 (6). What is evident from these two figures, is that  
chiral perturbation theory is not converging and appears to provide an oscil- 
lating series for these quantities. Thus for larger values of the temperature, 
T > 100 MeV say, one sees that the pion mass decreases with temperature 
in the two loop approximation, in contradistinction with the one loop re- 
sult, the lattice results of the last section, and also in contradistinction with 
the model results obtained in the Nambu-Jona-Lasinio model, which will be 
presented later on in the following section. Convergence at temperatures in 
this range appears to be problematic, which is perhaps an indication that  
the series is at best asymptotic, or changes its nature due to the onset of 
the phase transition. In this range, one expects non-analytic behavior and it 
is unreasonable to expect a perturbation analysis to succeed. These curves 
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clearly indicate that  ChPT at finite temperature can at best be regarded as 
cool,  so that  the fundamental  behavior at low temperatures sets a constraint  
on the finite temperature behavior of would-be effective models.  
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Fig. 5: The pion mass, scaled by its value at T ---- 0 is shown as a function of the 
temperature. 
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Fig. 6: The pion decay constant, scaled by its value at T = 0 is shown as a function 
of the temperature. 

3 T h e  N a m b u - J o n a - L a s i n i o  M o d e l  

The Nambu-Jona-Las in io  (NJL) model  has been reviewed in detail by several 
authors from different viewpoints [8-10], and consequently I do not  wish to  
present any detail of  this model other that a basic introduction here. Rather 
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the purpose of this chapter is to illustrate tha t  with the simple equations 
requiring little computational  time, one can reproduce all the main features 
of the static properties tha t  have been so arduously extracted from years 
of labor on the lattice. It is extremely encouraging to have a simple model 
tha t  can be handled semi-analytically - one gains a t remendous amount  of 
insight into the actual functioning of the mechanism of dynamical symmet ry  
breaking and the consequences thereof. 

Nevertheless, the NJL model is simply a model - in contrast  to the results 
of the previous section, which are regarded as "factual", this section can only 
give model-dependent results. Accordingly it is only equitable to indicate, in 
addition to the successes provided by this approach, the failings also. These 
become obvious when examining bulk thermodynamic properties,  such as 
pressure, energy and entropy densities, and will be discussed in what  follows. 

We shall then turn  to dynamic properties, and examine the t empera tu re  
dependence of scattering amplitudes in the quark-antiquark channel, which 
displays a divergence which we term critical scattering, in analogy to  the 
phenomenon of critical opalescence that  is observed in light scattering. 

3.1 O r d e r  P a r a m e t e r  

We first consider the order parameter  for the chiral transit ion tha t  is obtained 
from the NJL Lagrangian, which, for two flavors of quarks, is taken to be 

~:NJL = ~ ( z ) ( i  ~ - m0)¢Cz) + G[(~¢) ~ + (~i75T¢)~], (75) 

where G is a dimensionful coupling strength, and m0 denotes the common 
current  quark mass for u and d quarks. For three flavors of quarks, we use 

8 
LNjL = ~(~)(~ ~ -  m~)¢(~)+ a Z [ ( ~ ° ¢ )  ~ + (~o75¢) ~] 

a : 0  

- g { d e t ¢ ( 1  + 75)¢ + de t¢(1  - 75)¢}. (76) 

: m0, m0). Here G and K both are dimensionful coupling strengths and m~ diag(m~, d 8 
The  self-energy, in the mean field approximation, tha t  corresponds to the low- 
est order term in an expansion in the inverse number of colors Nc [12,13], is 
given as3 

m = mo - 2G((¢¢) ) ,  (77) 

and the condensate is given explicitly as 

NcN!Tf ~ fo a p2 ( (¢¢) )  -- ~--~p[1 - f - ( p , / z )  - f+(p,/z)],  (78) 

a Since the coupling strengths turn out to be large, GA 2 ,~ 2, an expansion in the 
number of couplings is inadmissable and an alternative expansion scheme must 
be used. 
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with 
f±(p,p)  = 1 

[1 + exp jS(Ep 4-/~)]" (79) 

One sees tha t  the condensate is directly proportional to  the value of the 
dynamically generated mass, in the event tha t  the current  quark mass is zero. 
Although the situation is more complicated in SU(3), where the dynamically 
generated quark masses satisfy coupled equations, 

GiVe KN~ 
o _ - - -~miA(mi ,  lti) + --~--mjmkA(mj, l~j)A(mk,  ~k), mi -.~ m i 

i # j # k (SO) 

and the function 

A(mI ,  #I) -- 161r2 E eiW~ lip d3P 1 
n I <  a ( 2 1 r )  3 (iWn +/~f)2 _ E ]  

is proportional  to the condensate density for a specific flavor, 

A ( m s , . i )  ~ ((¢¢))I ,  

(81) 

(s2) 

the dynamically generated quark masses are equivalently order parameters  of 
the phase transition, and we therefore plot these. They  are shown here only 
for the SU(3) case, in Fig. 7, for a finite value of the current quark mass [30]. 
As expected, the phase transition that  occurs in the chiral limit is washed 
out and becomes a cross over. Another feature tha t  emerges in this model is 
tha t  the strange quark mass remains large, even at temperatures  T ,~ 300 
MeV, and does not reach its current mass value of 150 MeV until T > >  To. 

3.2  M e s o n  M a s s e s  

The  meson masses for the scalar and pseudosalar sectors are determined via 
the well-known method of evaluating the quark-antiquark scattering ampli- 
tude  in the random phase approximation, and searching for poles of this 
function. This involves knowing only the irreducible polarization function 
tha t  one can construct from a single quark loop, the details of which can 
be found, for example, in [9,10,30]. One finds the masses tha t  are shown in 
Figs. 8 and 9 for the pseudoscalar and scalar sectors, respectively. In Fig. 8, 
2mq is plotted in addition to m~. The point at which these two curves cross 
is called the Mort temperature,  TM~. For T > TM,,, the pion is no longer a 
bound state, but  is a resonance, with a finite width that  is not shown here. 
Similarly we have plotted mq + ms, from which the kaonic Mott  t empera ture  
TMr is defined. For T > >  TM~, the kaon is also a resonance with a finite 
width. 
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Fig. 7: Temperature dependence of the constituent quark masses. The solid line 
refers to the light quarks, the dashed to the strange quark [30]. 
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Fig. 8: Temperature dependence of the pseudoscalar meson masses, as well as that 
of 2mq and mq + ms. [30]. 
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Fig. 9: Temperature dependence of the scalar meson masses and 2mq [30]. 

These graphs deserve some comment. Firstly let us compare them with the 
figure showing the meson masses obtained via lattice gauge theory, Fig. 2. 
We note first tha t  there are some fundamental differences in obtaining these 
graphs: (a) Figs. 8 and 9 show so-called pole masses, while Fig. 2 gives screen- 
ing masses. Nevertheless, it has been shown that ,  in the NJL model, the tem- 
perature behavior of screening masses and pole masses is qualitatively similar 
[31], although quantitatively somewhat different. Since we cannot hope for 
any quantitative agreement at this stage, it is justifiable to make a com- 
parison. (b) The NJL model calculation shown is for SU(3), while the lattice 
calculation is SU(2). With these points in mind, note that  the a and 7r mesons 
from figures 8 and 9 become degenerate at high temperatures, as observed 
also in Fig. 2. However, there is no undershooting of the a meson. The meson 
labelled m~. of Fig. 8 corresponds to the a0 of Fig. 2. Here one observes 
qualitatively the same behavior, i.e. tha t  this scalar meson also decreases 
strongly in the phase transition region. Thus one has an aesthetically pleas- 
ing agreement between the NJL model and the results obtained by lattice 
gauge theory for meson masses at this level. 

A direct comparison of Fig. 7 with the results of chiral perturbation the- 
ory, i.e. with Fig. 5 is problematic. We simply make some comments: (a) the 
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physics underlying Figs. 5 and 7 is completely different. Fig. 5 is obtained 
by constructing meson loops (the mesons are regarded as structureless point- 
like objects), while in Fig. 7, the pion is constructed from a quark-antiquark 
loop. Meson loops form corrections to this calculation and would be of the 
next order in 1~No. Such corrections have in fact been evaluated, and it has 
been found that the leading order T 2 dependence of Eq.(68) is recovered [32]. 
The fact that in the final analysis the curve of M~ as a function of tempera- 
ture is finally decreasing for chiral perturbation theory in Fig. 5, is in strong 
contradiction to both Figs. 2 and 8. 

3.3 Bulk Thermodynamic Quantities 

In the last subsection, we have indicated the successes of the NJL model in 
calculating the order parameter and masses as a function of temperature. In 
this subsection, we turn to bulk thermodynamic quantities. Here we will see 
that the model does not do as well, and that the lack of confinement makes 
itself strongly evident at low temperatures, while the cutoff of the model 
is a hindrance at high temperatures. We start with the thermodynamical 
potential 1"2, calculated in the grand canonical ensemble. Given an interaction 
between fermions that is 4-point in nature such as in Eq.(75), K2 can be 
calculated quite generally as [10,33] 

f o l d ) ~ l /  d3p 1 - ~ - - ~  (27r)3 C2 = C2o + ~ exp(ivn~)Tr[S~(un,p)S~(un,p)], (83) 
n 

where C20 is the thermodynamic potential in the absence of interactions, 
and }-~ and S ~ designate the Matsubara self-energy and Green function 
associated with the system. The superscript ,~ refers to the fact that both S 
and 27 are to be evaluated with the introduction of an artifical coupling that 
multiplies the interaction Lagrangian £int. The Matsubara frequencies for 
fermions are, as required, odd, i.e. u,~ = (2n + 1)rr/~, with n = 0, 4-1, 4-2 4- 

. . . .  

For the NJL Lagrangian of Eq.(75), in the mean field approximation, it 
is not necessary to apply Eq.(83). A straightforward calculation gives 

d3p Ep 
S? = ~2q = -2NEW I f 

2NcNI daP e-/~(E'-")], (84) f ( - ~ )  31nIl + e-Z(E,+~')][1 + 

with Ep 2 = p2 + m 2. As is evident from the label q, this appears to be a 
thermodynamic potential generated solely by the quark degrees of freedom. 

We note also that the thermodyamical properties can only be measured 
relative to the physical vacuum, 

s?,hys = /2(T = 0, p = 0, m(0, 0)), (85) 
v a c  
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which, for the mean field approximation, corresponds to 

(oph~,~ . 2NON! f Ep (86) 
(m too) d3p 

"'~ac jinx = 4G ~ - ~  " 

To introduce mesonic degrees of freedom, it is necessary to go beyond 
the mean field approximation to include the next set of terms in the liNe 
expansion. The self-energy in this case includes effective interactions in both 
the scalar and pseudoscalar channels [34], 

1~,  / d3q ,~,, ,q)V:(v ,  q) 
Y $  

+ i751rS(Vn,,q)i"fsTY:(v n - Vn,,p - q)], (87) 

and is constructed on summing the Fock and infinite RPA series that con- 
tribute to the self-energy in this order. Here 

q) = -2a [1 - 2c r/M q ) ] - l ,  (88) 

and the irreducible polarization in the mesonic channel 

f dSq 1 IIM(w,n,p) = (2~r)3 fl E TrFMS(Vn +w,n,q + p)FMS(vn,q), (89) 
n 

is determined by the vertex FM for that channel. Inserting Eq.(87) into 
Eq.(83) yields the fluctuating part of the thermodynamic potential, 

NM ei~"' ln[1 - 2GIIM(wn,p)]. (90) 
~]l= ~"~- '~  j d3p 1~-.~ 

The nature of this term is revealed on performing the frequency sum. One 
has 

~f, = ~,¢ + .Q¢, (91) 

where, for each species M = 7r or a, 

/ d3p f ° °dw[ lw+ l l n ( l _ e - ~ ] ~ l  
~M = - -  NM (27r) 3 J0 fl "' 27ri 

d 1 - 2GHM (w + ie, p) (92) 
x ~ In 1 - 2GIIM(w -- ie,p)" 

Some analysis shows that a simple approximation for the polarization near 
the pole, i.e. 

1 - 2GHM(W,p) -- (w 2 - E ~ )  x const (93) 

leads to 
f d3p rl ~ 1 ln(1 - e-~EM)], (94) ~M = NM j -~t~JC~M + -~ 
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exact ly  as one would expect for the thermodynamic  potential  given bosonic 
degrees of freedom. The  pole approximat ion is however insufficient, as one 
integrates  over all energies, and in practice, the fact tha t  the bound s ta tes  
also become delocalized resonances a t  the Mot t  point must  also be  accounted 
for. This  has been done in introducing phase shifts in each channel [34]. 

In order to calculate the pressure, the physical vacuum given by Eq. (85) 
mus t  be reevaluated to include a t e rm from Y2/t. One now has 

_ . ~  phys ~ p h , j .  rOph,~s~ . + (0 , , , ,  c ) / z .  (95) - - I )O,C k ~ U ~ C  I1T b l  

and the pressure density is now 

p : - /2q - a f t  + a~h~ s. (96) 

In Figs. 10 and 11, the pressure and associated energy densities evaluated 
f rom this the rmodynamic  potential  are shown. 

3 
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Fig. 10: The pressure density, scaled by T 4, is shown as a function of temperature. 
The lower curve is for the mean field case only, the upper includes fluctuations 
(mesons). The vertical line indicates the critical temperature and the horizontal 
one the Stefan-Boltzmann limit for an ideal quark gas [34]. 

In Fig. 10, one sees tha t  the lower curve, corresponding to  the mean field 
approximat ion  calculation represents the quark degrees of freedom. There  is 
an appreciable pressure tha t  arises from this term, i .e. from the quark degrees 
of freedom, for tempera tures  T < To, which is indicated by the vertical line. 
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Including mesonic degrees of freedom rectifies the behavior at small temper- 
atures, but still leaves a large intermediate range of temperatures T < Tc 
that is dominated by these unphysical quark degrees of freedom. This is thus 
a direct consequence of the missing feature of confinement. The sharp rise in 
the pressure density shown in Fig. 3 cannot be modelled by a non-confining 
theory. At high temperatures, T > Te, there is a small contribution from 
the mesonic degrees of freedom, that exist as correlated states with a finite 
width in the plasma. The main contribution arises however here from the 
quark degrees of freedom. The actual value obtained for the pressure density 
underestimates the Stefan-Boltzmann limit (shown as a horizontal line), since 
there is a finite cutoff on the quark momenta. Relaxing this constraint would 
lead to the pressure density approaching a constant. 

10 

4 2 ~ ~ "  / ................. 

0 i i 

0 50 100 250 300 150 200 
T (MeV) 

Fig. 11: The energy density, scaled by T 4, is shown as a function of temperature. 
The lower curve is for the mean field case only, the upper includes fluctuations 
(mesons). The vertical line indicates the critical temperature and the horizontal 
one the Stefan-Boltzmann limit for an ideal quark gas [34]. 

Similar comments can be made for the energy density: the intermediate 
temperature range 50MeV< T < Tc is dominated by quark degrees of free- 
dom, indicating the lack of confinement. The high temperature values T > Tc 
do not approach the Stefan-Boltzmann limit, due to the cutoff. 

In concluding this subsection, one sees that one needs to include confine- 
ment in some fashion in order to be able to regain the lattice picture. From a 
thermodynamic point of view, the high temperature regime about T _~ Tc is 
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probably best described by the model, in the sense that only quark degrees 
of freedom plus correlated mesonic states are present. In the next subsec- 
tion, we thus study elastic quark-antiquark scattering about this point and 
indicate that a divergence occurs in the cross-section at T = T M  and that  
the phenomenon of critical scattering as a consequence of the chiral phase 
transition is observed. 

3.4 Critical Opalescence in the Quark-Antiquark Channel 

In this section, we examine the behavior of the quark-antiquark scattering 
amplitude in the NJL model in the vicinity of the Mott temperature, which 
replaces the critical temperature when finite current quark masses are used. 
In SU(3), there are seven independent processes out of a total of fifteen for 
quark-antiquark scattering, taking isospin and charge conjugation symmetry 
into account. These are listed in Table 3. Mesons that can be exchanged in 
the s and t channels, as are given by the Feynman diagrams of Fig. 12 are 
also listed. 

Process Exchanged mesons (s channel) Exchanged mesons (t channel) 
ud -~ ud  ~r, o',r ~r, ~7, ~7', a,~, a,  o J 
u~ -+ u~ K ,  O~K 

U~ ~ d d  ~ ,  7 ,  r f  , o'=, o', o t 

8~ --~ u •  rl, r f  , o ,  o "l 

S$ "-4 S~ rl, ~ ,  o, o "~ 

77, 17 I, O', O "! 

"/t", O'~ 
I '~, OK 
g ~  O'K 
K ,  OK 

Table 3: Independent processes for q~ scattering. 

and 

The transition amplitudes can be written as 

- i M s  = 5cl,c26c3,c, V ( P 2 ) T u ( p l  ) [ i V ~  (pl  + p2)]fi(p3)Tv(p4) 

+Scl ,c25c~,c ,~(P'z) ( i75T)u(p , )[ iT~P (pl  + pa)] f~(pa)( i 'y~T)v(p4) ,  

(97) 

- i M t  = 5c , 35c2, .  (p3)TU(pl )[iT)St (pl - pa)] (p2 )Tv(pa) 
a(p3)(i75T)u(p  )[iVP (pt - p3)]V(p2)(i"(sT)v(p4), 

(98) 
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Pl, ml f P3, m3 
~ , ~  Pl+P2 

p~, m2 J -  ~ p~, m 4 

pl,ml ~ p3, m3 

P2, m2 ~ P4, m4 

Fig. 12: Feynman diagrams for elastic qq scattering within the NJI model in an 
expansion to lowest order in 1INc. 

where T selects the isospin eigenvalue for a particular channel, and D~'~ p is the 
s or t channel, scalar or pseudoscalar quark-antiquark scattering amplitude, 
and which can be constructed from the corresponding polarization function. 
It has a simple form, for example [9] 

2 G e l !  

l )=(po ,p )  : 1 - 2 a e l  l I IPa(po,  p )  ' (99) 

where G e l l  is an effective SU(3) coupling strength in the pionic channel [9]. 
The differential cross section is constructed in the usual fashion as 

da 1 1 
d---t- = 16~r[s - (m,, + rn,)2][s - (m,, - m,) =] 4N~ ~ [M, - M d  2, (100) 

while the total cross section is evaluated as 

da 
a = dt -~-[1 - . fF(flE3)][1 - .fF(flE4)], (101) 

introducing a Fermi blocking factor for the final states. Here E 2 = p2 + rn,2., 
where i -- 3, 4. 

In Fig. 13, we show the total cross section for light quarks in the initial 
state, as a function of v/~, at a temperature T ---- 215 MeV, which lies slightly 
higher than the pion and kaonic Mott temperatures, TM ,  = 212MeV and 
TMK = 210MeV. Both pions and kaons are sharp resonances now. At higher 
values of the temperature, these become broader resonances in the cross- 
section, as shown in Fig. 14. At the Mott temperature itself, when quarks 
bind into hadrons, the intermediate states in the s channel give rise to in f in i te  
cross sections at threshold. This feature, which also appears in other processes 
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like 7rlr -4 7rlr [35], 7r 7 -+ 7r'y [36] or q~ -+ 7")" [37,38] is akin  to  the  p h e n o m e n o n  
of  cri t ical  opalescence.  This  has been  discussed in some detai l  in Ref. [39], and  
the  in teres ted  reader  is referred to  this.  
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Fig. 13: Total cross section for qq scattering with only light quarks in the  initial 
state, shown as a function of v/'i, at  T = 215 MeV. 
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Fig. 14: Total cross section for q~ scattering with only light quarks in the initial 
state, shown as a function of v~,  at T = 250 MeV. 
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4 N o n - e q u i l i b r i u m  f o r m u l a t i o n  a n d  t r a n s p o r t  e q u a t i o n  

The  considerations of the first two sections discussed propert ies of chiral 
systems in equilibrium. If it were possible to measure any of the associated 
changes at  the phase transition temperature,  there would be no need for 
further  discussion. However, because of the nature of confinement, we are 
unable to observe critical scattering directly, nor any of the other  dramatic  
changes in pion properties. One tool for examining quark mat te r  is via heavy 
ion collisions, and as such, over the short t ime scales over which collisions 
occur, it is unclear whether both thermal and chemical equilibrium can be 
reached during a collision. For this reason, we wish to investigate what  the 
effects are of a condensate that  changes with the medium, as well as medium 
dependent  cross sections in a non equilibrium scenario. 

There are several formal aspects tha t  have to be unders tood before one 
can a t tempt  actual collision simulations. Firstly one can set up an exact 
formal description of a relativistic fermionic system tha t  is out of equilibrium 
via the method of Schwinger and Keldysh. From a heuristic point of view, 
however, we have a good understanding of the classical Bol tzmann equation, 
so tha t  it is important  to  establish a link between the two from which one can 
then go further. In doing so, one generally has a field theory with retarded 
and advanced Green functions. However, if we examine the collision term of 
the Bol tzmann equation, we see that  we require cross sections. However, we 
only know how to calculate these using causal Green functions. So we have 
to find a link telling us which level of approximation requires which Feynman 
graphs. 

The content of this lecture is summarized briefly in the next paragraphs.  
(a) We wish to start  from a chosen Lagrangian that  gives a microscopically 
correct description of the world, and to formulate a non-equilibrium theory 
via a matr ix  of Green functions SiJ(ggl, x2) (i and j will be defined later!). 
This matr ix  of Green functions satisfies a matr ix  form of the Schwinger-Dyson 
equations, which as usual, cannot be solved exactly. (b) Some technical aid is 
required at  this point. A centre of mass variable X = (xl + x2)/2 and relative 
coordinate u = xl  - x 2  are introduced, and one Wigner transforms the matr ix  
of Green functions. This is simply a Fourier t ransform with respect to the 
relative coordinate u. At this point, the equations are still exact. (c) Now 
one seeks methods of solution. For a fermionic system, the exact method  
would involve making a spinor decomposition of the Green functions, and 
we would have 32 coupled equations to solve! This is simply too difficult, in 
particular for an expanding system, for which spatial gradients are important ,  
and so we turn  rather to making the quasiparticle assumption, which, coupled 
with an expansion in powers of h, leads to the well-known kinetic theory  of 
Boltzmann, here in relativistic form. 
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All that  has been discussed is quite general for any fermionic theory. 
Using the Lagrange density of the Nambu-Jona-Lasinio Lagrangian with an 
expansion in 1/Nc illustrates how extensions to the standard binary collision 
forms in the Boltzmann equation come about, and clears the issue of the 
content of Feynman graphs for the cross sections that occur in the Boltzmann 
equation. 

4.1  C l o s e d  t i m e  p a t h  - S c h w i n g e r - K e l d y s h  f o r m a l i s m  

There are several excellent texts that exist that cover the basics of the 
Schwinger-Keldysh formalism [40,41] for Green functions not in equilibrium. 
Detailed reviews using path integrals can be found in [42], while the more 
standard operator approach is to be found in [43-45]. Most confusing in this 
subject is simply notation: All the listed references use different ones. I shall 
conform to that of Landau 4, which is particularly transparent in setting up 
rules for a perturbative diagrammatic expansion. 

Central to the problem of non-equilibrium systems is that the description 
via a single causal Green function alone, is inadequate. One requires the four 
Green functions, 

ihSC(x, y) = (T¢(x )¢ (y )  ) = i l i S - -  ( x, y) 

iliS++ (x, y) 

i a s  > (~,  u) = ( ¢ ( ~ ) ¢ ( y ) )  = i a s  + - ( ~ ,  u) 

i h s  <(~,  u) = - ( ~ ( u ) ¢ ( ~ ) )  = i h s  - + ( ~ ,  u), (102) 

i.e. the causal and acausal propagators S c and S a, S > and S <. In Eq.(102), 
T is the standard time ordering operator, 

T(O(x)O(y))  = O(xo - yo)O(x)O(y) - O(yo - xo)O(y)O(x),  (103) 

and T the antitime ordering operator, 

~ ' ( o ( x ) o ( u ) )  = e(uo - z o ) O ( x ) o ( u )  - e ( z o  - u o ) O ( u ) o ( ~ ) .  (104) 

On the right hand side of Eq.(102), the superscripts i j  = + , -  have been 
introduced (these were mentioned in the introduction to this section). This 
is an arbitrary but useful convention for constructing a matrix notation for 
summarizing the Green functions, 

_ S + _  S +  + . ( 1 0 5 )  

It is automatically achieved by introducing the closed time path of Fig. 15, 
and setting the fields that occur in the Green function S ij on the ith or j t h  
branch respectively. 
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) .  
+ 

Fig. 15: Closed time path on which the Green functions are defined 

There are many interlinking relationships tha t  follow simply from the 
definition of the Green functions. For example, S c and S a are related to  S > 
and S < via 

S- - (= ,  y) = O(xo - yo)S+-(x,y)  + O(yo - =o)S-+ (=, y) 
S ++ (=, y) = o(uo - =o)S + -  (=, y) + 0(=o - yo)S -+  (=, y). 

All four Green functions are not independent, since 

S - - ( = , y )  + S++(=,y) = S-+(= ,y )  + 8+-(x,u) 
= s " ( . ,  y) = - -~([¢(=) ,~(y)]) ,  

(106) 

( m r )  

defining the Keldysh Green function. In addition, one can define the re tarded 
and advanced Green functions 

ihSR(=,  U) = e(=o - Uo)({¢(x), ~(~)}) 
i h S  a (x, y) = -O(yo - xo)(  { ~b(x), ~(y)}) ,  (108) 

which are also related to the S ij via 

S n (=, y) = S - -  (x, y) - S - +  (x, y) = S + -  (x, y) - s ++ (=, u) 

SA(x,y) = S - - ( x , y )  - S - + ( x , y )  = 8 - + ( x , u )  - S + + ( x , y ) ,  (109) 

which can also be verified directly from the definitions of these functions. 
One could consider working with the matr ix  of independent functions 

_s'= s ° s K  , (]a0) 

but  I will not do so in this chapter. Nevertheless, the retarded and advanced 
Green functions play a special role. Due to their simple analytic s t ructure,  
plus the fact tha t  the equations of motion that  they satisfy (see Eq.(117) 
later!) are closed, means tha t  one usually can find a simple analytic form for 
these functions. 

4 This differs from the labelling of [43] by a minus sign. Off-diagonal self-energies 
also differ by a minus sign. 
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The matrix of self-energies is defined now via the Dyson equation, 

S_(x, y) = S°(z, y) + f d4zd4wS...~°(x, w)E..~_(w, z)S(z, y) 

= + (111) 

Pictorially, one can for example examine one element of this equation - say 
S ++. The equation tha t  this function satisfies is given in Fig. 16, using an 
obvious notation. Thus one sees that  all components of the self-energy are in 
fact required in order to evaluate one single component of _S. 

i S + +  = 
4 + 

= ,, 4-  ._ t Z.' l : 
+ + + ~- ~- + 

+ 

+ - + 

+ + 

Fig. 16: Dyson equation for one component of the matrix of Green functions. 

Prom the Dyson equation, one can derive the equations of motion for the 
components of S, which are summarized as 

(in @~ - m o ) S ( x , y )  = o ' z ~ 4 ( x  - y) "~" f (112) 

where 

~r.~_z = ( 0  g l ) .  (113) 

By defining the retarded and advanced self-energies as 

,U n = Z - -  + ,U -+  

~A = ~7-- + Z + - ,  (114) 

one finds the corresponding Dyson equations for S' ,  

y) = S__.~ d°) (x, y) + f d4zdawS___[ '(°) ix, w)~7' (w, z)S...~.'(z, y), (115) s'Cz, 
J 
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from which one sees tha t  the Dyson equations for S R and S A are individually 
closed, 

4 R,A(0) (~, ~tJ).~R'A R,A sy:/'(=,v) = + f d =~'~sZ. . .  (,~,z)s.. (~,v) 
(116) 

with corresponding equation of motion 

f d 4 ~R,A, Z~,-,R,A, (in #. - ~o) .~  s~4~(~,y) = ~ ( =  - y) + ] ~ ~ ~,  j ~ .  ~ ,v) ,  
(117) 

while the equation for the Keldysh function is integrodifferential, 

(ih #, - too) S K = f (Y, rSA + Y, RSr)d4z. (118) 

For a free particle, it is useful to note tha t  the solution for the retarded and 
advanced functions follows immediately as 

Ib + m0 (119) 
SR'A (P) = 1)2 _ m~ -4- iepo " 

4.2 TrAnsport and Constraint Equation~ 

Of the matr ix  of Green functions, consider only the equation of motion for 
S - + ( x ,  y)  tha t  follows from Eq. ( l l2 ) .  This is 

- +  ++ + E ~  (=,z)sz, (z,v)} (120) 

In a similar fashion, one can derive the equation of motion 

- s ; ~  (=, z)~ M (~, y)}. (121) 

It  turns out  to be slightly more convenient to cast these equations in an 
alternative form, using the relations Eq.(109) between the Green functions, 
and similar ones for the self-energies. We write 

(in ~. - m0).~ s~+(=, v) = f ~ { ~ : ~ ( ~ , z ) S J j ( ~ , v )  - ~:~+- (~, ~)s~,-+ (z, v) 

+E~A=,z)SZ+(~,v ) -  -+ ~ 
(122) 
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and 

+ s : y ( x , z ) ~ , ( ~ , v ) ) ,  (12z) 

It is now a tedious technical task to Wigner transform Eqs.(122) and (123). 
We illustrate this on a simple example and then simply give the final result. 
Introducing relative and centre of mass variables u = x - y  and X = 1 (x + y), 
the Wigner transform of S(x, y) is defined to be 

f u u (124) S(X,p) = d4uein'u/aS(X + ~, X - ~). 

To Wigner transform say the first term on the left hand side of Eq.(122) 
requires an integral of the form 

f d%dP"/~O~f(x, y) 
= fd~ue,~./~(1 0 

20X u 
0 

Ouu 
1 1 

- - ) l ( x  + ~u, x - ~u) 

f 1 I _ 1 0 daueipU/af(X + ~ u , X -  ~u) 
20X u 

1 1 + f d'~( oa~'~/~)S(x + ~ , x  - ~ )  j ou~ 

1 u ~.~)fCX, P). = (~Ox + (125) 

Similarly one can show that 

~ ~o~)/(X,p) (1261 o~fcx, u) -, ( - ~  + z 

f(y)g(x, y) --¢ f(X) exp OXu Opt, g(X,p) (127) 

f(x)g(x,y)--~ f(X)exp ( ih ~ ]~ ) 2 0 X  u Op~ 9 ( X ' P )  (128) 

f d4zf(x'z)g(z'y) - Y ( O X u  Opt, Op u ] (X,p)  exp g(X,p) 

(129) 

need be made on Wigner transforming the product functions on the left hand 
side of the last equations. Applying these relations to Eqs.(122) and (123) 
leads to the rather complex forms for the equations of motion, 

0 ipu)_mo}S_+(X,p) = 
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E -+ (x ,  p)AS +- (x ,  p) - ~ + -  (x ,  p)2ts -+ (x ,  p) 
+ 27A(X,p)AS-+(X,p) - E-+(X,p) . ,{SR(X,p)  

(130) 

and 

s_+(X,p){_ih~.(l *d 

( ih. Y 
2 = exp --~(-ff-~.-~ Op u 

ipu 
+ -~--) - t oo}  = - S R ( X , p ) . A , U , - + ( X , p )  

+ S - + ( X , p ) A E A ( X , p ) ,  

(131) 

Op u ~.-~-~ ) . (132) 

Now subtracting and adding these resulting equations, one arrives at two 
futher equations, which we identify as the transport and constraint equations 
respectively: 

i h .  u O S - +  
-~1"7 , OXu } + [ k ' S - + ( X ' P ) ]  = I_  (133) 

and 
il~. u OS-+"  
-~-['y , 0-~-~J + {~b - m0, S -+ } -- I+. (134) 

In these equations, the terms that occur on the right hand side are decom- 
posed into three types of contribution, one containing at least one retarded 
function, one with at least one advanced function and a further term with 
neither, which in the semi-classical limit is the origin of the collision integral. 
Explicitly, one has 

IT =/con + I A + I~, (135) 

with 

/con = E -+ (x, p)~is +- (x, p) - E +- (x, p)AS -+ (x, p) 
/ - ga in  / - loss  
~col l  - -  Z c o l l ,  (136) 

I~ ---- -E-+(X,p)z[SR(X,p) 4- SR(X,p)~LU-+(X,p) (137) 

and 
r~ = zA(x,p)AS-+(X,p) + S-+(X,p)~zA(X,p). (138) 

Equations (133) and (134) are the central, exact equations that describe the 
non-equilibrium evolution of a system of interacting quarks. To actually see 
that these are in fact transport and constrint equations known from Vlasov of 
Boltmann theory requires some (hard) work. This follows only under certain 
approximations, and of course one needs some model in order to specify the 
interactions. For this purpose, we will use the Nambu-Jona-Lasinio model. 
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Before doing this however, note that an exact solution of Eqs. (133) and (134) 
follows formally on making a spinor decomposition, 

1 ~v 
- i h S  -+ = F + i75P + 7~'Vu + "7~"75A~, = ~a S~,.. (139) 

The equations for the projected functions F N t rS-+,  p ... tr75S-+, . -- ,  
form a set of 16 times 2 coupled equations that need to be solved simulta- 
neously. This is not only a formidable task from the computational point of 
view, it also offers at present little physical insight. 

For reasons of simplicity, therefore, we introduce the quasiparticle ansatz 
that contains the quark and antiquark distribution functions f q (X ,p )  and 
f~(X,  p), and which puts these on their mass shell, 

S - + ( X , p )  = 2 7 r , ~ [ 5 ( p 0  - Ep)fq(X,p)  - 5(po + E p ) ] , ( X , - p ) ]  (140) 

with ]q,q = 1 - fq,q. Similar expressions can also be easily written down for 
the remaining components of the matrix S ii. 

4 .3  T h e  V l a s o v  e q u a t i o n  for  t h e  N J L  m o d e l  

At this point, one cannot go luther unless one specifies a theory or model from 
which the self-energy can be calculated. A four point interaction like that  of 
the SU(2) NJL model is particularly simple to handle because the Feynman 
rules are particularly simple: (a) a directed line represents a fermion. The 
signs attributed to the beginning (i) and end (j) of the line reflect in the 
Green function iS  j~ to be associated with the line. (b) an interaction line 
can have only a single sign on both of its ends. If the sign is ±, it is to be 
translated as ± i V ,  with V being the interaction strength. In the NJL model, 
this is V - -2G.  

According to these rules, in the Hartree approximation, it follows im- 
mediately that ~ + -  = ~ - +  = 0, so that Icou = IR ---- 0. Only IA ~ O. 
Furthermore ,U A (X,  p) ---- .U A (X)  ---- re(X)  alone, so that  

I_ A = ZA(X)[1 - -~-(0,  . - ~ . ~ z ) ] S  -+  

- s - + [ 1  - _ + O(h ) 

(141) 

or 
I A_ = - iha~.EAa~S -+,  (142) 

and the transport equation becomes 

ih . a S - +  ( x , p )  
-~t'7 ~ } + [I~, S -+(X,p)]  ---- -ihO~,~uAa;s -+. (143) 
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Assuming that  the quasiparticle ansatz for S -+ (X,p) of Eq. (140) holds and 
that  the mass is to be considered as the dynamically generated Hartree 
mass that is to be self-consistently determined, one can insert Eq.(140) into 
Eq.(143), take the trace over spinor indices and integrate over a positive en- 
ergy interval A+ that contains Ep, to arrive at an equation for the quark 
distribution function, 

cg~(° f q(X' P) ---- Pioi f ( X' P-------~) + m( X)Oim( X)O~ ( fq(~p p) ) = (144) 

On performing the derivatives and extracting a factor of 1/Ep, one can write 
this as 

~----~(f a~,f q(X, p) + = O, (145) m(X)a~,m(X)a~ f q(X, p) ) 

which is the Vlasov equation for the model. It must be solved concurrently 
with the gap equation for m(X), 

[1 - fq(X,p) - f¢(X,p)], (146) 
d3p 1 

re(X) =mo + 4GNcm(X) (27rh) 3 Ep(X) 

that is derived directly from the Hartree self-energy. The constraint equation, 
in this same approximation in the expansion in h, is 

(p2 _ m2(X) ) /q(X,p) _-- 0, (147) 

which validates our use of the quasiparticle assumption as being exact. Equa- 
tion (145) indiates that chiral symmetry breaking enters via the condensate 
or mass already as a spatially varying potential in the Vlasov equation. 

4 .4  T h e  B o l t z m a n n  e q u a t i o n  for  t h e  N J L  m o d e l  

In principle, the next step from a physical point of view would be to incorpo- 
rate all self-energy diagrams of the next order in 1~No. This would correspond 
to meson exchange [12]. This has not been done yet formally [47] and we will 
touch on this briefly in the following subsection. Here we shall rather examine 
the simpler problem of considering our self-energy with at least two interac- 
tion vertices, such as shown in Figs. 17 and 18 for the NJL model. These are 
the minimal types of diagram that can possibly give rise to an off-diagonal 
self-energy ,U +-  say, and therefore to a non-vanishing contribution to the 
gain and loss terms that comprise Icoll in the transport equation, Eq.(133). 
We will not give details here, but just note the salient features [46]. 
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+ 

i E + -  + 
J # 

4- - -  + 

(a) (b) 

Fig. 17: Direct (a) and exchange (b) graphs that contribute to .U -+  and which 
contain two interaction lines. The vertices can be either all scalar or all pseudoscalar 
in nature. 

+ - -  + 

(a) (b) 

Mixed graphs that contribute to .Um+i~ed and which contain two interaction Fig. 18: 
lines. 

Firstly, a direct translation of the off-diagonal graphs, in the scalar channel 
say, 

27+-(X,p)=_4G2h2 f d4pl d4.p2 d4p3 
J (27rtO 4 (27ra) 4 (27ra) 4 

× IS+- (x,  p )tr ( s - +  (x ,  ) s  +-  (x ,  p.)) 
- S  + -  (X, Pl )S -+  (X, p2)S + -  (X, p.)], (148) 

contains a product  of three Green functions. Recalling that  this will be mul- 
tiplied by S - +  in the collision integral and also tha t  we must t race and in- 
tegrate  the result first over a positive energy interval, we can easily see tha t  
such a procedure will lead to eight terms that  each contain some product  of 
four quark or antiquark distribution functions, such as for example 

coefficient x ]q(P)fq(P2)fq(P3)fq(P4) (149) 

In a loose sense, if one designates fq,q(p) to represent an incoming quark 
(antiquark) and ]q~ to represent an outgoing quark (antiquark), then one 
can draw diagrams associated with each process. For example, the products  
listed in Eq.(149) would represent quark-quark scattering. A similar te rm of 
the eight possible leads to quark-antiquark scattering, while the remaining 
six tha t  are not listed (but which are easily worked out),  are shown in Fig. 19. 
Some of these look like the typical vacuum fluctuation processes tha t  would 
occur in any relativistic theory and in addition to these, there are others tha t  
give rise to pair creation and annihilation. All six graphs of this figure can be 
shown to vanish from energy-momentum conservation due to the quasiparticle 
assumption! This gives us an indication of the complexity and richness of the 



156 Sandi P. Klevansky 

theory that  would go beyond the standard collision scenario if one relaxes 
this assumption. 

I I 
A _ lk ~ 7~ 

(a) (b) 

! 
! 

(c) (d) 

Fig. 19: Six graphs that axize from the term ~ 27+-S -+. These axe heuristic graphs 
axe are not Feynman diagrams. 

Secondly, it is important to verify that the coefficient functions in the 
term of (149) in fact truly give rise to the differential cross section for elastic 
quark-quark scattering as would be calculated from real Feynman diagrams 
(and not heuristic graphs of Fig. 16) such as are displayed in Fig. 20. In 
fact, this has been explicitly demonstrated to be the case [46]. One finds 
that  the contribution from Fig. 17(a) gives rise to the amplitudes squared of 
both the s or u channels for qq scattering (or s or t channels for q~ scatter- 
ing), while Fig. 17(b) is required to produce the interference terms between 
them. It appears that evaluating nonequilibrium self-energies for the Boltz- 
mann equation leads to scatering processes that can be obtained from all 
possible combinations of cutting the slef-energy grphas of Fig. 17 vertically, 
reminiscent of the Wick-Cutkowsky rules [17]. 

Finally, one arrives at a Boltzmann equation from Eq.(133). It reads 

f o y (x,v) + m(x)a m( x)a  = 

Nofdaf 
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1 3 1 3 

P 2 P 2 
t-channel u-channel 

Fig. 20: t and u channel Feynman graphs for elastic quark-quark scattering, to 
lowest order in 1/No. 

.1 da 
× ~ 13)(fq(pl)]q((p3):q(p) - ](pl)fq(p2)/q(p3)fq(p)) 

+ ~_~j~q_.qq(p 2 d a  ~ 13)(/q(Pl)f#(p'2)fq(PZ)fq(P) -- fq(Pl)fq(P3)fq(P2)fq(P))}, 

(150) 

The constraint derived earlier, Eq.(147), however, remains unaltered. From 
the Boltzmann equation, it is apparent that the changes in the condensate 
with the medium affect the equation in two possible places: (a) As with the 
Vlasov equation, a medium dependent potential occurs on the left hand side 
that is related to the effective quark mass in medium and (b) the cross- 
sections occurring on the right hand side are medium dependent, and also 
depend on changes of the quark and meson masses in the medium. As we have 
seen in the preceding section, the cross section for quark-antiquark scattering 
diverges at the phase transition. 

The actual answer as to what one should expect from numerical simu- 
lations is however unclear: since the differential cross-sections are averaged 
over, one may lose the sharp signal of the divergence. However, the force 
term on the left hand side may still play an essential role. At this stage also, 
too many physical features are still lacking, in particular, the coupling of the 
quark degrees of freedom to mesons and their coupling back to the quarks. 
This must lead to a hadronization scenario. In the final subsection of this 
chapter, we briefly sketch how this might occur. For numerical simulations 
thus far, we refer the reader to [48] and other references cited therein. 

4.5 H i g h e r  orders in 1/N~ and m e s o n  p r o d u c t i o n  

As already pointed out earlier, the expansion in the coupling strength that  
was used for selecting the diagrams of the last section is inadmissable, because 
GA ~ 2. Going to higher orders in the 1/Nc expansion is however non-trivial, 
as a symmetry conserving set of graphs must be chosen. From [12,13], we 
know that  this comprises firstly the set of graphs of Fig. 21 for the self- 
energy, where the "F" denotes the new full Green function that  must be 
newly determined in a self consistent fashion. 
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O F 

I 
- i E  F = ~ + 

, ,  ] 

~ F 

Fig. 21: Self-consistent self-energy that includes meson exchange. 

Denoting the two terms in the self-energy as ~71 and 272 respectively, one 
can make an expansion of the new full Green function about that governed 
by 271, 

E = + 272(k) (151)  

S F = SE1 q- SE1 z~2 SF 

1 1 1 
- ~ -  27------7 + ~-S-----~ ~ ~---=-~, + " "  (152) 

Concomitantly, the irreducible polarization I'IF(k) now occurring in the quark 
antiquark scattering amplitude 

_ i D F  (k ) = 2iG 
1 - 2GIIF(k) (153) 

must contain further terms, 

HE = / / 0  + 5//  (154) 

where/ /0 is the simple quark loop, in order to be symmetry conserving. The 
graphs required for H E are shown in Fig. 22. 

Inserting the expansion of the Green function and the irreducible polarization 
into the full self-energy of Fig. 21, leads to graphs that contain inter alia 
diagrams of the form shown in Fig. 23. 

This gives us an intuitive understanding that, on evaluating these dia- 
grams in the non-equilibrium scenario, we should no longer simply obtain a 
cross-section for elastic quark-quark and quark-antiquark scattering, but also 
the hadronization process of q(t --+ M M ' ,  where M and M ~ are mesons. Much 
work however, remains to be done in this regard. 
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Fig. 22: Contributions to the irreducible polarization to next to leading order in the 
1~No expansion. 

Fig. 23: Diagrams occurring in ,U, that lead to the hadronization of a quark into 
two mesons. 

5 C o n c l u d i n g  c o m m e n t s  

In this series of lectures, we have investigated some aspects of chiral symmet ry  
breaking at finite temperatures.  We have seen that  in the last few years, 
much information is emerging from the lattice gauge community tha t  tells us 
about  the transition region itself. Chiral perturbat ion theory, on the other  
hand, while being excellent in the low temperature  regime, cannot  adequately 
describe a phase transition. 

In the following section, we have investigated the Nambu-Jona-Lasinio  
model at finite temperatures.  It gives a remarkably good qualitative agree- 
ment with the lattice data  in the realm of static properties. It fails, however, 
to describe the bulk thermodynamic properties well, primarily due to  the 
fact tha t  confinement is lacking. The NJL model gives a simple picture for a 
delocalization rather  than a deconfinement transition. Associated with this 
(physically appealing) picture tha t  bound mesons become delocalized at the 
transit ion temperature  - now the Mort temperature  - and are still correlated 
states with a finite width in the quark medium, are marked divergences in 
many functions, such as the pion radius, 7r-Tr and ~-K scattering lengths (not 
discussed here), as well as the phenomenon of critical scattering, observed in 
the quark-antiquark channel. 

Due to the fact tha t  none of the apparent  singularities are directly observ- 
able experimentally, we have turned to t ransport  theory, in order to investi- 
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gate what effects are to be expected from a condensate density that is medium 
dependent. Calculations at this stage indicate that a Boltzmann equation is 
dependent on the condensate through a force term, and also via the cross- 
sections that arize from binary collisions among the quarks and antiquarks. 
Howver, the stage of calculation is still primitive: a consistent physical the- 
ory that  includes mesons and which overcomes the problems associated with 
the lack of confinement is required before one can expect to obtain credible 
results. This, of course, leaves the path open for future research. 
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A b s t r a c t .  3-flavor quark matter (strange quark matter; SQM) can be stable or 
metastable for a wide range of strong interaction parameters. If so, SQM can play 
an important role in cosmology, neutron stars, cosmic ray physics, and relativis- 
tic heavy-ion collisions. As an example of the intimate connections between as- 
trophysics and heavy-ion collision physics, this Chapter gives an overview of the 
physical properties of SQM in bulk and of small-baryon number strangelets; dis- 
cusses the possible formation, destruction, and implications of lumps of SQM (quark 
nuggets) in the early Universe; and describes the structure and signature of strange 
stars, as well as the formation and detection of strangelets in cosmic rays. It is 
concluded, that astrophysical and laboratory searches are complementary in many 
respects, and that both should be pursued to test the intriguing possibility of a 
strange ground state for hadronic matter, and (more generally) to improve our 
knowledge of the strong interactions. 

1 I n t r o d u c t i o n  

Hadronic mat ter  is expected to undergo a transition to quark-gluon plasma 
under  conditions of high temperature  and /o r  baryon chemical potential.  These 
conditions may be achieved for a brief moment in ultrarelativistic heavy-ion 
collisions, but  they are also likely to appear in Nature.  A very high den- 
sity (and comparatively low temperature)  environment exists in the interior 
of neutron stars, which may actually contain significant amounts  of quark 
mat te r  in the interior. High temperatures  (but rather  low baryon chemical 
potential) were realized in the first 10 -4 seconds after the Big Bang, and 
here a hot quark-gluon plasma state must have existed until the t empera tu re  
dropped to 100-200 MeV due to the adiabatic expansion of the Universe. 

This Chapter  will outline some of the possible ways in which astrophysics 
may  teach us about  the existence and properties of quark-gluon plasmas. The  
advantage relative to  laboratory searches is, tha t  t ru ly  bulk systems can be 
studied, and that  the timescales involved are much longer than  those relevant 
to  collisions. Disadvantages are tha t  astrophysicists (with possible exceptions 
if strange quark mat ter  is absolutely stable) can only observe indirect con- 
sequences of the plasma state for example in the properties of pulsars or in 
the distribution of light nuclei produced a few minutes after the Big Bang. 
It will be shown, however, that  astrophysics arguments in many cases can 
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be used to constrain parameters significantly relative to direct experimental 
approaches because of the large volumes and timescales involved. 

The implications of quark-gluon plasmas in astrophysics and cosmology 
are many-fold, and I shall focus on aspects related to the idea of (meta)stability 
of strange quark matter through discussions partly biased by my own research 
interests. 

Lumps of up, down, and strange quarks (strange quark matter, SQM), 
with masses ranging from small nuclei to neutron stars, rather than 56Fe, 
could be the ground state of hadronic matter even at zero temperature and 
pressure. This possibility, first noted by Bodmer in 1971 [1], has attracted 
much attention since Witten resurrected the idea in 1984 [2]. The existence 
of stable or metastable SQM would have numerous consequences for physics 
and astrophysics, and testing some of these consequences should ultimately 
tell us whether SQM really exists. 

First it was believed that SQM might give a natural explanation of the 
cosmological dark matter problem. While not ruled out, this idea is now 
less popular, but strange quark matter may still be important in astrophys- 
ical settings, such as strange stars. Numerous investigations have searched 
for deposits of SQM on the Earth and in meteorites, so far unsuccessfully, 
and recently relativistic heavy-ion collision experiments have been performed 
and/or proposed to test the idea. Cosmic ray searches have come up with a 
few potential candidates for small SQM-lumps (strangelets), but at present 
no compelling evidence for stable SQM has been presented. This, however, 
does not rule it out. Most searches for SQM are sensitive to strangelets with 
very low baryon number, A, and as discussed later, finite size effects have a 
significant destabilizing effect on such objects, even if SQM is stable in bulk. 

There is a significant range of strong interaction parameters for which 
SQM in bulk is stable. But even if it is not, many of the (astro)physical 
implications are more or less unchanged in the case of metastable SQM. In 
neutron stars, for instance, the high pressure brings SQM closer to stability 
relative to hadronic matter, and it is quite likely, that neutron stars contain 
cores of strange quark matter, even if SQM is unstable at zero pressure. In 
relativistic heavy-ion collision experiments, strangelets need "only" survive 
for 10 -8 seconds to be of interest. In fact, (meta)stable strangelets may be 
one of the "cleanest" signatures for formation of a quark-gluon plasma in 
such collisions. 

The present review tries to give an account of the status of strange quark 
matter physics and astrophysics, as of early 1998, but of course not all as- 
pects are covered in equal detail. In particular, nothing is said about the 
heroic experimental efforts to produce strangelets in heavy-ion collisions. A 
collection of papers describing all aspects of SQM and a list of references to 
the field through mid-1991 can be found in [3]. An earlier review was given in 
[4]. Recent reviews include [5-12], and the thorough reader will notice, that  
some parts of the present Chapter borrows from my own papers among these 
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since the physics discussed therein remains more or less unchanged. Refs. 
[11,12] also discuss the related issue of lumps of metastable strange hadronic 
matter, which will not be dealt with here. 

Section 2 discusses the physics of SQM, starting out with simple esti- 
mates of why 3-flavor quark-matter is likely to be more bound than the 
2-flavor alternative, proceeding with more detailed descriptions of SQM in 
bulk. Smaller systems (strangelets), for which finite-size effects are crucial, 
are described in Section 3. Most of the results are based on the MIT bag- 
model, but it is worth stressing from the outset that this should only be 
viewed as a crude approximation to reality, ultimately to be surpassed by 
direct QCD-calculations. 

Section 4 deals with the possible production of lumps of SQM (often called 
quark nuggets) in the cosmological quark-hadron phase transition, and the 
struggle of quark nuggets to survive evaporation and boiling in a hostile en- 
vironment. It turns out, that only large nuggets are likely to survive, but the 
physics involved in the destruction process is illuminating as it resembles the 
(time-reversed) physics involved in strangelet production in heavy-ion colli- 
sions. Implications of surviving quark nuggets for Big Bang nucleosynthesis 
and the dark matter problem are also discussed. 

Perhaps the most likely place to discover SQM (even if it is not abso- 
lutely stable) is in neutron stars. These could be "hybrid", "strange", or 
even "mixed" (the first term conventionally used for neutron stars with quark 
cores; the second for "true" quark stars in case of SQM stability, and the latter 
for objects with mixed phases of quark matter and nuclear matter). Section 
5 describes these stars, their implications for our understanding of pulsars, 
and the possible connection to the energetic gamma-ray bursters. 

Strangelets surviving from the early Universe o r  released from strange 
stars in binary systems have been searched for in cosmic ray detectors and 
in meteorites and mineral deposits. So far there are only a few potential 
candidates, but more sensitive experiments will soon be carried out. Section 
6 discusses some of the limits obtained. It also presents an astrophysical 
argument which either improves the Earth-based flux-limits by many orders 
of magnitude (almost excluding absolutely stable SQM), or predicts that all 
neutron stars are strange stars, if SQM is stable (the prediction to choose 
depends on whether any pulsars can be proven to be ordinary neutron stars). 

Conclusions and a brief outlook are provided in Section 7. 

2 P h y s i c s  o f  S Q M  in  B u l k  

2.1 Does  Strange Matter Conflict with Experience? 

At first sight, the possibility that quark matter could be absolutely stable 
seems to contradict dally life experiences (and experiments) showing that 
nuclei consist of neutrons and protons, rather than a soup of quarks. If a 
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lower energy state exists, then why are we here? Why have we not decayed 
into strange quark matter? 

The answer to this obvious question is, that (meta)stability of strange 
quark matter requires a significant fraction of strange quarks to be present. 
Conversion of an iron nucleus into an A --- 56 strangelet thus demands a very 
high order weak interaction to change dozens of u- and d-quarks into s-quarks 
at the same time. Such a process has negligible probability of happening. 
For lower A the conversion requires a lower order weak interaction, but as 
demonstrated later, finite-size effects destabilize small strangelets so that they 
become unstable or only weakly metastable even if strange quark matter is 
stable in bulk. 

Therefore (meta)stability of strange quark matter does not conflict with 
the existence of ordinary nuclei. On the other hand, the existence of ordi- 
nary nuclei shows, that quark matter composed of u- and d-quarks alone 
is unstable, a fact that will be used later on to place constraints on model 
parameters. 

Another constraint from our mere existence can be placed on the electri-  
cal charge of strangelets. If energy is gained by converting ordinary matter 
into strange quark matter, strangelets with negative quark charge, even if 
globally neutral due to a cloud of positrons, would have devastating con- 
sequences, eating up the nuclei they would encounter. Even a small stable 
component in the cosmos would be intolerable (but they could still appear 
as metastable products in heavy-ion collisions, like the recent charge -1 ,  
mass 7.4 GeV event in NA52 at CERN [13]). A positive charge on the quark 
surface (neutralized by surrounding electrons) is less problematic, because 
ordinary nuclei will be electrostatically repelled. The barrier has to be of a 
certain height, though, in order not to impact stellar evolution (see below). 
Note that neu t rons  are easily absorbed. As demonstrated later, this has im- 
portant consequences for quark star formation and can be used to constrain 
strange matter properties using several astrophysical lines of reasoning. It 
may even lead to practical applications in energy production, etc. [14]. 

2.2 Simple Arguments for (Meta)Stability 

As argued above, quark matter composed of u and d-quarks is expected to be 
unstable (except from 3-quark baryons). Introducing a third flavor makes it 
possible to reduce the energy relative to a two-flavor system, because an extra 
Fermi-well is available. The introduction of an extra fermion-flavor makes it 
possible to increase the spatial concentration of quarks, thereby reducing 
the total energy. A penalty is paid because the mass of the s-quark is high 
compared to that of u and d, so stability is most likely for low s-quark mass. 
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To make the argument slightly more quantitative, consider non-interacting, 
massless quarks 1 inside a confining bag at tempera ture  T = 0, without exter- 
nal pressure. For a massless quark-flavor, i, the Fermi momentum, PFi ,  equals 
the chemical potential, ~ui ( throughout the chapter, unless otherwise noted, 
h = c = k B  = 1; for an introduction to Fermi-gas thermodynamics,  see for 
instance Ref. [15]). Thus the number densities are ni  = 1~/Tr ~, the energy 
densities ei : 3/~4/(4~r2), and the pressures Pi =/~4/(47r2) - The  sum of the 
quark pressures is balanced by the confining bag pressure, B; ~-~i Pi : B; the 
total  energy density is e = ~-~i ei + B = 3 ~-]~i Pi  + B = 4 B  , and the density 
of baryon number is n B  = ~']~i h i~3 .  Notice that  the sum of the const i tuents  
pressures, as well as the total  energy density are given solely in terms of the 
bag constant,  B. 

For a gas of u and d-quarks charge neutrality requires n d :  2n , ,  or/~2 ------ 
Pu : 2-1/3~Ud • The corresponding two-flavor quark pressure is P2 = P u + P d  : 
(1 + 24/s)p24/(4~r2 ) = B,  the total  energy density e2 = 3P2 + B = 4B, and 
the baryon number density nB2 = (nu + ha)~3  = #3/~r2, giving an energy per 
baryon of 

1/4 e 2 / n n 2  = (1 + 24/3)3/4(47r2)1/4B1/4 = 6.441B 1/4 ~ 934MeVB145, (1) 

R1/4 where ~145 ---- B 1 / 4 / 1 4 5 M e V ;  145MeV being the lowest possible choice for 
reasons discussed below. 

A three-flavor quark gas is electrically neutral for nu = na  : ha,  i. e.  

ju3 --- ~uu = /~d = #, .  For fixed bag constant the three-quark gas should 
exert  the same pressure as the two-quark gas (leaving also the energy density, 
es : 3P3 + B  = 4B, unchanged). Tha t  happens when/~3 = [(l+24/s)/3]l/4ju2, 
giving a baryon number density of riBS : /~]/~r2 = [(1 + 2 4 / s ) / 3 1 3 / 4 n s  2, The  
energy per baryon is then 

]/4 e 3 / n B 3  = 3p3 = 3 3 / 4 ( 4 r 2 ) 1 / 4 B  1/4 : 5.714B 1/4 ~ 829MeVB145; (2) 

l o w e r  than  in the two-quark case by a factor n B 2 / n B 3  = (3/(1 + 24/3)) 3/4 
0 .89.  

The possible presence of electrons was neglected in the calculations above. 
For two-flavor quark matter ,  including electrons in chemical equilibrium via 
u + e -  ~-~ d + Ve, so tha t  ~uu +/~e : / ~ d ,  gives more cumbersome equations, 
but  only changes e 2 / n B 2  to 6.445B 1/4, since ~ue turns out to be ra ther  small. 
Three-flavor quark mat ter  does not contain electrons for non-interacting, 
massless quarks. 

One may therefore gain of order 100 MeV per baryon by introducing an 
extra  flavor. At fixed confining bag pressure the extra  Fermi-well allows one 

1 Since current quark masses rather than constituent quark masses enter in the 
MIT bag model used to describe SQM, this is a very good approximation for u 
and d-quarks with 5 MeV~ m~ <md  ~ 10 MeV << 300 MeV ~ p~, pd. 
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to  pack the baryon number denser into the system, thereby gaining in binding 
energy. 

The energy per baryon in a free gas of neutrons is the neutron mass, 
mn -- 939.6MeV; in a gas of 56Fe it is 930 MeV. Naively, stability of ud- 
quark mat te r  relative to neutrons thus corresponds to e2/nB2 < ran, or 
B 1/a < 145.9MeV (B 1/a < 144.4MeV for stability relative to iron). The  
argument  can be turned around: Since one observes neutrons and 5~Fe in 
Nature,  ra ther  than  ud-quark matter,  it is concluded that  B 1/4 must be larger 
than  the numbers just  quoted. More detailed calculations including finite-size 
effects and Coulomb-forces do not change these numbers much, so we shall 
assume for the present purpose tha t  B 1/4 -- 145MeV is an experimental  
lower limit for as  --- 0. (Here a8 denotes the strong "fine-structure" constant;  
as  ---- 0 corresponding to non-interacting quarks except for the confinement 
given by B).  

Bulk strange quark mat ter  is absolutely stable relative to a gas of iron for 
B 1/a < 162.8MeV, metastable relative to a neutron gas for B ~/4 < 164.4MeV, 
and relative to  a gas of A-particles (the ultimate production limit in heavy-ion 
collisions) for B 1/4 < 195.2MeV. These numbers are upper limits. As demon- 
s t ra ted below, a finite s-quark mass as well as a non-zero strong coupling 
constant decreases the limit on B 1/4. 

The presence of ordinary nuclei in Nature cannot  be used to  tu rn  the 
values of B 1/4 just  quoted for SQM into lower limits. Conversion of a nucleus 
into a lump of SQM requires simultaneous transformation of roughly A u- and 
d-quarks into s-quarks. The probability for this to happen involves a weak 
interaction coupling to the power A, i. e. it does not happen. This leads to the 
conclusion, tha t  even if SQM is the lowest energy state for hadronic mat te r  in 
bulk, its formation requires a strangeness-rich environment or formation via 
a "normal" quark-gluon plasma in relativistic heavy-ion collisions, the early 
Universe, or a neutron star interior. All of these possibilities will be explored 
in the following. 

2 .3  SQiV[ in  B u l k  at  T = 0 

The estimates above assumed ms : a8 : 0. Non-zero as was found by Farhi 
and Jaffe [16] to correspond effectively to a reduction in B. In the interest 
of simplicity I will therefore set a8 = 0 in most of the following. The  energy 
"penalty" paid by having to form s-quarks at a finite mass of 50-300 MeV 
calls for more detailed calculations, however. Such calculations are usually 
performed within the MIT bag model [17,18]. 

Strange quark mat ter  contains degenerate Fermi gases of u, d, and s 
quarks, and e -  or e +. Chemical equilibrium is maintained by weak interac- 
tions, 

d ~-'~ u + e -  + Pe (3) 

s ~ u + e -  + ~,~ (4) 
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u + s  ~ d + u ,  (5) 

where the first two reactions should be understood to include also the various 
permutations of the involved particles. 

Neutrinos generally escape the system, so we shall ascribe to them no 
chemical potential. Thus the chemical potentials in equilibrium are given by 

#d = U, = # ,  + m .  (6) 

Knowing the chemical potentials one can calculate the thermodynamic 
potentials. 

(7) 
~ e , v  - -  127r 2 

/2u,v -- 47r2 (8) 

#4 (9) 
Yta, v -- 47r2 

tt~ ( ~ 3 4 l + ( 1 - - A 2 )  1/2) 
/2,,V -- (1 -- A2)1/2(1 -- )~2) + ~A In (10) 

4~ 2 ~ ' 

defining A = r n , / # , .  
Number densities are given by 

n i , v  = -OJT i , v /O# i ;  (11) 

-- J 31 , / r2  i. e. n e , v  = I.taJ37r ~, n . , v  = #3u/Tr2, n d ,  V t .*d,  , n s , v  ~- it/]( 1 - -  /~2)3/2/7r2" 
The total pressure is 

=-Ea,,v-B=0, (12) 
i i 

and charge neutrality requires 

2 1 1 
-~n~,v - -~nd,v - -~ns,v - n e , v  = O. (13) 

The total energy density is 

e = E ( Y 2 i , v  + n l , v # i )  + B ,  (14) 
i 

and the density of baryon number 

1 
n B =  ~ ( n u , v  + n d ,  V + n , , v ) .  (15) 

Combining Eqs. (6) and (13) leaves only one independent chemical po- 
tential, which can be determined from the pressure balance, Eq. (12). Thus 
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Fig. 1: Energy per baryon for bulk strange quark matter as a function of bag con- 
stant and strange quark mass. 

all parameters can be calculated for a given choice of m8 and B. Results of 
such calculations are shown in Figure 1. Similar calculations were originally 
done by Farhi and Jaffe [16]. 

The calculations above assumed zero temperature and external pressure. 
Finite temperature and external pressure can be relevant in connection with 
cosmology (Section 4) and strange stars (Section 5) respectively, and also for 
strangelet creation in collision experiments. The relevant extensions of the 
formulae above will be given in Section 3.4. 

3 S t r a n g e l e t s  

So far the treatment of SQM has focused on the bulk properties. This ap- 
proximation is generally valid for large baryon numbers. For A << 107 the 
quark part of $QM is smaller than the Compton wavelength of electrons, 
so electrons no longer ensure local charge neutrality. Therefore Coulomb 
energy has to be taken into account, though the fortuitous cancellation of 
qt ,  + qd  + qs  ----- 2 1 1 = 0 means that Coulomb energy is much less 3 3 3 
important for strangelets than for nuclei. For even smaller baryon numbers 
(in practice A < 10 a) other finite size effects such as surface tension and 
curvature have to be taken into account. 

Several strangelet searches with relativistic heavy-ion collisions as well 
as cosmic ray searches have been carried out, and others are planned for 
the future. Most of these searches are sensitive only to low A-values, so it 
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is important to know the properties of small lumps of strange quark matter 
(strangelets). 

In the following I will describe the physical properties of strangelets in 
the language of the MIT-bag model (only limited work has been performed 
using other models--qualitatively confirming the MIT-bag results, though 
quantitative details can differ). First, I will discuss results obtained from 
direct solution of the Dirac equation with MIT-bag boundary conditions; such 
mode filling calculations correspond to a nuclear shell model. Then I will show 
how the mean behavior of the shell model results can be understood physically 
in terms of a liquid drop model calculation based on a smoothed density 
of states, and how approximations to the liquid drop results give simple 
formulae for strangelet masses etc. Finally I discuss the changes introduced 
if strangelets are at finite rather than zero temperature. 

3.1 Shell  M o d e l  

Mode-filling for large numbers of quarks in a spherical MIT-bag was per- 
formed for ud-systems by Vasak, Greiner and Neise [19], and for 2- and 3- 
flavor systems by Farhi and Jaffe [16], and Greiner et al. [20] (see also [21]). 
Gilson and Jaffe [22] published an investigation of low-mass strangelets for 
4 different combinations of s-quark mass and bag constant with particular 
emphasis on metastability against strong decays. Further parameter ranges 
were studied and compared to liquid drop model calculations by Madsen [23], 
and recently new shell-model studies were published by Schaffner-Bielich et 
al. [24]. All of these calculations were performed for a8 = 0, which will also 
be assumed in the following. 

In the MIT bag model noninteracting quarks are confined to a spherical 
cavity of radius R. They satisfy the free Dirac equation inside the cavity and 
obey a boundary condition at the surface, which corresponds to no current 
flow across the surface. The bag itself has an energy of BV. In the simplest 
version the energy (mass) of the system is given by the sum of the bag energy 
and the energies of individual quarks, 

E = E Ega, i ( ra~  q- "'~,,,k2 31/2 + B 4 , R  313. (16) 

Here ka,i =- xa,i/R, where xa,i are eigenvalues of the equation 

- -~, i  
f~(X~,i) = (x~,i + mi R2 2)1/2 + miRf~-l(x~,  i)" (17) 

f~ are regular Bessel functions of order ~ ,  

f j~(x) ~ >_ 0 
f (x) = [ < 0 (18) 
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For states with quantum numbers (j, l) r takes the values ~ -- + (j + ~) for 
l = j 4- ~.x For a given quark flavor each level has a degeneracy of N~,i = 
3(2j + 1) (the factor 3 from color degrees of freedom). For example, the 1S1/2 
ground-state (j  = 1/2, I = 0, ~ = - 1 )  for a massiess quark corresponds to 
solving the equation t a n x  = x/(1 - x), giving x -~ 2.0428. The ground s ta te  
has a degeneracy of 6 per flavor. 

For massless quarks (finding the equilibrium radius from OE/OR = 0) one 
gets 

1 [ 4  " - 3 / 4  
E ---- 364.00MeVB145 ( ~  x~ ,0  (19 )  

where the sum is to be taken over all 3A quark-levels, and the numbers x,~,i 
for massless quarks are tabulated in [19]. 

For massive quarks the level filling scheme is more cumbersome (see e.g. 
Refs. [22,23]). Fixing bag constant and quark-masses, for each baryon number  
one must fill up the lowest energy levels for a choice of radius; then vary the 
radius until a minimum energy is found (OE/OR = 0). Since levels cross, 
the order of levels is changing as a function of R. This is easily seen in the 
Figures, where one notices discontinuous changes in the position of shells. 

1050  . . . .  I . . . .  I ' • ' 1050  

. . . .  . . . . . . . . . . . . .  , o o  

0 50 100 
A 

• ' ' 1 ' 1  . . . .  i . . . .  i . . . .  

I 

5 10 15 20 
A 

Fig. 2: Energy per baryon (in MeV) for strangelets with 81/4 = 145MeV and ms 
from 0-300 MeV in steps of 50 MeV (rn~ increases upward). The figure on the right 
shows an expanded view of the low-mass region to highlight the change of "magic 
numbers" with changing ms. 

One notices tha t  the energy per baryon smoothly approaches the bulk 
limit for A -~ oo, whereas the energy grows significantly for low A. For low 
s-quark mass shells are recognized for A = 6 (3 colors and 2 spin orientations 
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per flavor), and less conspicuous ones for A = 18, 24, 42, 54, 60, 84, 102 etc. 
As rna increases it becomes more and more favorable to use u and d rather 
than s-quarks, and the "magic numbers" change; for instance the first closed 
shell is seen for A = 4 rather than 6. 

Equation (16) can be modified by inclusion of Coulomb energy and zero- 
point fluctuation energy. As already discussed the Coulomb energy is gener- 
ally small. The zero-point energy is normally included as a phenomenological 
term of the form -Zo/R, where fits to light hadron spectra indicate the choice 
Z0 -- 1.84. This was used, for instance, by Gilson and Jaffe [22]. Roughly half 
of this phenomenological term is due to center-of-mass motion, which can be 

2 ~ 3/8 
included more explicitly by substituting [()-~ x~,i)2 - ~ x~,iJ instead of 

(~-~ x~,i) 3/a in Eq. (19). The proper choice of as and Z0 is a tricky question. 
As discussed by Farhi and Jaffe [16] the values are intimately coupled to B 
and ms, and it is not obvious that values deduced from bag model fits to or- 
dinary hadrons are to be preferred. This uncertainty may have an important 
effect for A < 5-10, but the zero-point energy quickly becomes negligible for 
increasing A for reasons explained in Section 3.2. It means, however, that  it 
is difficult to match strangelet calculations to experimental data concerning 
ordinary hadrons or limits on the putative A = 2 H-dibaryon. 

3.2  L iqu id  D r o p  M o d e l  

Mode-filling calculations are rather tedious but do of course give the "correct" 
results as far as the model can be trusted. But for many applications a global 
mass-formula analogous to the liquid drop model for nuclei is of great use 
and also gives further physical insight. 

A phenomenological approach to a strangelet mass-formula was under- 
taken by Crawford et al. [25,26] whereas Berger and Jaffe [27] made a detailed 
analysis within the MIT bag model. They included Coulomb corrections and 
surface tension effects stemming from the depletion in the surface density 
of states due to the mass of the strange quark. Both effects were treated as 
perturbations added to a bulk solution with the surface contribution derived 
from a multiple reflection expansion. Madsen [23,28,29] gave a self-consistent 
treatment including also the very important curvature energy. 

The following discussion closely follows [23]. All calculations are done for 
zero temperature and strong coupling constant, as. As argued by Farhi and 
Jaffe [16] the latter assumption can be relaxed by a re-scaling of the bag 
constant. Also, I shall concentrate on systems small enough (A < 107) to 
justify neglect of electrons. Strangelets with A << l0 T are smaller than the 
electron Compton wavelength, and electrons are therefore mainly localized 
outside the quark phase. Thus strangelets do not obey a requirement of local 
charge neutrality, as was the case for SQM in bulk. This leads to a small 
Coulomb energy, which is rather negligible for the mass-formula (less than 
a few MeV per baryon), but which is decisive for the charge-to-mass ratio 
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of the strangelet. A characteristic of strangelets, which is perhaps the best 
experimental signature, is that this ratio is very small compared to ordinary 
nuclei. Finally, I neglect charge screening, an issue of negligible importance 
for the mass formula, but of some importance for the charge-to-mass ratio 
for systems of radii above 5-10 fm (A > 102-103) [30]. 

In the ideal Fermi-gas approximation the energy of a system composed of 
quark flavors i is given by 

E = E(l-2i + Ni#i) + B V  + ECou,. (20) 
i 

Here ~i, Ni and #i denote thermodynamic potentials, total number of quarks, 
and chemical potentials, respectively. B is the bag constant, V is the bag 
volume, and Ecoul is the Coulomb energy. 

In the multiple reflection expansion framework of Balian and Bloch [31], 
the thermodynamical quantities can be derived from a density of states of 
the form 

} dk [ 27r ~ + Is  kS + f c  C + .... , (21) 

where area S = ~ dS (= 47rR 2 for a sphere) and extrinsic curvature C = 

f (-~? + "~2)dS (= 8rrR for a sphere). Curvature radii are denoted Rt and 

R2. For a spherical system R1 - R2 = R. The functions f$ and f c  will be 
discussed below. 

In terms of volume-, surface-, and curvature-densities, nl, v, hi,s, and hi,c, 
the number of quarks of flavor i is 

f k~, dNi 
Ni = -~-~-dk = ni, v V  + ni,sS + ni,cC, (22) 

JO 

with Fermi momentum kFi (D~ - m2]1/2 12~1/2" = "'-i, =/~i(1 -- ,'~i =-- mi / I .$ i .  " ' i  / ' 

The corresponding thermodynamic potentials are related by 

J?i = g2i,vV + ni,sS + Oi ,cC,  (23) 

where O[2i /ODi  = -N i ,  and O~21,j/ODi = -ni, j .  The volume terms are given 
by 

] f2i,v 4~ 2 (1 - A~)1/2(1 _ ~Ai)5 2 + ~A i 3  4 In 1 + (1~i- A~)1/2 , (24) 

= Ai) ni,v ( 1 -  2 3/2 
I 

7 [ "  

The surface contribution from massive quarks is derived from 

fs(-~)---- lr{1-(2)tan_t~_} 

(25) 

(26) 
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as [27] 

3 s [(1 A~) A~(1-A/) 
Oi,s = "-~#i --6 3 

L 

--3--~ tan-I Ai J - 2 A i ( l  - _ , ,  

+ [1+ 
)~i J ; 

(27) 

= 3 2 

For massless quarks /2/,5 = ni,s = 0, whereas fc(O) = -1/24zr 2 gives 
[16,28,29] ~i ,c = D~/STr2; ni,c ---- -~i/41r 2. 

The curvature terms have never been derived for massive quarks, but as 
shown by Madsen [23], the following Ansatz (found from analogies with the 
surface term and other known cases) works: 

This expression has the right limit for massless quarks ( f c  = -1/247r 2) and 
for infinite mass, which corresponds to the Dirichlet boundary conditions 
studied by Balian and Bloch [31] (re = 1/12r2). Furthermore, the expres- 
sion gives perfect fits to mode-filling calculations (see the Figures and dis- 
cussion below). From this Ansatz one derives the following thermodynamical 
potential and density: 

#7 r 1 + (1 - )~2)1/2 71" 3 7 r ~  i 

/2i'C : 871"2 t A~ log )'i + 2~----i' ~ + 7rA~ 

1 ( 1 -  ~)1/2]  . 
- ,X-;. tan-a ,Xi-; 'J ' (30) 

/~i [ 2 x/2 37r(1-A~) ~ ( 1 - A 2 )  I/2] 
ni,c---- ~-~2 ( 1 - A i )  2 - - A i  + . t an  - I  ~// j .  (31) 

With these prescriptions the differential of E(V, S, C, Ni) is given by 

dE ---- ~ (12i,vdV + ~2i,sdS + ~i ,cdC + pidNi) + B d V  + dEcoul. (32) 
i 

Minimizing the total energy at fixed Ni by taking dE = 0 for a sphere 
gives the pressure equilibrium constraint 

2 2 dEcoul (33) 
B = - ~ a , , v  - -~ ~ n,,5 - - #  ~ a , ,o  dV ' 

i i i 
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with 
a Z ~  a Z  2 (34) 

Ecou l -  10R + 2R ' 

dEbou________~l _ a Z  2 a Z  2 (35) 
d V  401r R 4 8rR 4' 

where Z v  = ~]i qini, v V  is the volume part of the total charge, Z, whereas 
charge Z - Z v  = ~[]i q i (n i , sS  + n i , cC)  is distributed on the surface. The 
quark charges are qu = 2/3, qa = qs = -1 /3 .  Eliminating B from Eq. (20) 
then gives the energy for a spherical quark lump as 

1/2 2j2 4 E E = E ( N i l ~ i  + -~ i , sS  + -~ i , cC)  + -~ Coul- (36) 
i 

The optimal composition for fixed baryon number, A, can be found by 
minimizing the energy with respect to Ni at fixed V, S, and C giving 

OEcoul~ 
O = d E  = E #i + " ~ i  ] dNi" (37) 

$ 

Massless  Q u a r k s - - B u l k  Limi t  For uncharged bulk quark matter Eq. (36) 
reduces to the usual result for the energy per baryon 

e ° = A - '  E N°/~°, (38) 
i 

where superscript 0 denotes bulk values. The energy minimization, Eq. (33), 
corresponds to 

J2 ° (#0)4 (39) B=- E 5 -  
i i 

The last equality assumes massless quarks. In the bulk limit the baryon num- 
ber density is given by 

1 (.o)3 (40) n°=5  
$ 

and one may define a bulk radius per baryon as 

R 0 = (3/47rn°) 1/3. (41) 

For quark matter composed of massless u, d, and s-quarks, the Coulomb 
energy vanishes at equal number densities due to the fact that the sum of the 
quark charges is zero. Thus it is energetically most favorable to have equal 
chemical potentials for the three flavors. From the equations above one may 
derive the following bulk expressions for 3-flavor quark matter: 

----- - -  = 1.905B 1/4 -- 276.2MeVB145; (42) 
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n ° = (/*°)a/r? = 0.700B 3/4 (43) 

R ° = (3/4rm°a) lla = 0.699B -1/4. (44) 

And the energy per baryon is 

e ° = 3/* 0 = 5.714B 1/4, (45) 

in agreement with Eq. (2). 
Following Berger and Jaffe [27] one may to first order regard Coulomb, 

surface (and here correspondingly curvature) energies as perturbat ions on 
top of the bulk solution. In this approach one gets 

E e° + A-1  Z .(20 co  = eO 313/12B1/4 
"~ = i ,C  + rrl/621/e A2[ 3 

i 

[829MeV + 351MeVA-2/3] --,4,"1/4" (46) 

The corresponding result for 2-flavor quark matter  (c.f. [29]) is 

E e O + A _ I Z ~ o  ,~o [ ] (47) A i'c~" ~ 934MeV+291MeVA-2 /3  n l / 4  - -  ~ *-'145" 
i 

M a s s i v e  s = Q u a r k s - - B u l k  L i m i t  

Eq. (39), changes to 

B = - E Oi°, v 

For m8 > 0 the energy minimization, 

i 

i=~,d 41r~ ~ (1 -- ~2)I/2(1 -- 

3 1 + (1 - A=) 1/2 ] 
+ ~  A 4 In X ' (48) 

and the baryon number density is now given by 

( / * ' )  ( 1  - -  ~ 2 ) 3 / 2  ( 4 9 )  
7r---7- + ~ ,  . 

A bulk radius per baryon is still defined by Eq. (41). 
In bulk equilibrium the chemical potentials of the three quark flavors are 

equal, /,° u = #o = /*o _ /*o = co/3. Neglecting Coulomb energy one may 
approximate the energy per baryon of small strangelets as a sum of bulk, 
surface and curvature terms, using the chemical potential calculated in bulk: 

E e o + A - 1 K - ' ~ o  S O A - X K - ' o o  C O (50) = /__, i ,s + ~ i , c  , 
i { 
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where S O = 47r(R°)2A 2/3 and  C o = 8~r (R° )A  1/3. Examples  for B 1/a = 

145MeV are (with s-quark mass in MeV given in parenthesis) 

e(0) = 829MeV + 0MeVA -1/~ + 351MeVA -2/3 (51) 

e(50) = 835MeV + 61MeVA -z/3 + 277MeVA -2/3 (52) 

e(150) = 874MeV + 77MeVA -1/3 + 232MeVA -2/3 (53) 

e(200) = 896MeV + 53MeVA -1/3 + 242MeVA -2/3 (54) 

e(250) = 911MeV + 22MeVA -z/3 + 266MeVA -2/3 (55) 

e(300) = 917MeV + 0.3MeVA -1/3 + 295MeVA -2/3 (56) 

e(350) = 917MeV + 0MeVA -1/3 + 296MeVA -2/3 (57) 

1 o 5 o t [  . . . .  , . . . .  , 

1000 

950 

i 

(} 5 0  i O 0  
A 

Fig. 3: Shell-model and liquid drop model results compared for B 1/4 --- 145MeV 
with massless u and d quarks, and with m,  in the range 50-300 MeV in steps of 50 
MeV. For each value of m, the upper smooth curve is the full liquid drop model 
result, whereas the lower smooth curve is the bulk approximation. 

The  bulk approximations above generally undershoot the correct solu- 
t ion with properly smoothed density of s tates by 2MeV for A > 100, 5MeV 
for A ~ 50, 10MeV for A ~ 10 and 20MeV for A ~ 5 (Figure 3). This  
is because the actual chemical potentials of the quarks increase when A 
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decreases, whereas the bulk approximations use constant ~. For massless 
s-quarks the expression for e(0) scales simply as B 1/4. The same scaling ap- 
plies for rns > e°/3, where no s-quarks are present; in the example above 
the scaling can be applied to e(350). For intermediate s-quark masses both 

e and ms should be multiplied by u145 to scale the results. For instance, if 
B 1/4 -~ 165MeV one finds e(150) = 985MeV + 93MeVA-U3 + 265MeVA-2/3; 
e(250) = 1027MeV + 46MeVA -1/3 + 284MeVA -2/3. Coulomb effects were 
not included above. Their inclusion would have no influence for ms -~ O, but 
would change the results by a few MeV for large ms. In particular charge 
neutral ud-quark matter has e = [934MeV + 291MeVA -2/3] ~1/4 u145 (Eq. (47)) 

rather than the [917MeV + 296MeVA-2/3] ~145"1/4 found above (EQ. (57)). 
In connection with the shell-model calculations I described the effects of a 

zero-point energy of the form - Z o / R ,  and claimed that it was important only 
for A < 10. This can be understood in the bulk approximation of constant ~u, 
because the zero-point term per baryon is proportional to A -4/3 compared 
to A -1/3 and A -2/3 for surface and curvature energies. The full term to be 
added to the bulk approximation expressions for a given e ° is: 

~,ero ---- -Zo(41243~)  1/3 [2 + [1 (3rnsleO)]3/2] '/3 - -  ~°A-4/3, (58) 

typically of order - 2 0 0 Z o M e V A  -4/3. 

3.3 Shel l  M o d e l  versus  Liquid  D r o p  M o d e l  

Self-consistent solutions can be obtained from Eq. (36). These solutions are 
compared to the shell-model calculations and the bulk approximations in the 
Figures. The fits are very good, showing that inclusion of surface tension and 
curvature energy via the multiple reflection expansion explains the overall 
behavior of the results. 

3-flavor quark matter is energetically favored in bulk, and could be abso- 
lutely stable relative to 5eFe for 144MeV < B 1/4 < lfi3MeV. The lower limit 
corresponds to experimentally excluded stability of ud quark matter, whereas 
the upper limit corresponds to a bulk energy per baryon of uds-matter  of 930 
MeV for m,  = 0. 

Finite-size systems are strongly destabilized by the curvature energy, with 
a magnitude of about 300MeVA-2/3B~/4 for 3 quark flavors. This may pose 
problems for the experimental attempts of producing strange quark matter, 
since these experiments so far can only hope to create quark lumps with 
baryon number A < 20-30, and observe lifetimes exceeding 10 -8 seconds. 
Further destabilization occurs for finite-mass s-quarks, where the surface 
tension (exactly zero for massless quarks) adds up to 90MeVA -1/3 to the 
energy. 

Writing E / A  = e ° + CsurfA -1/3 -{- Ccurv A - 2 / 3  , with C~urf ~ 100MeV and 
Ccurv ~ 300MeV, the stability condition E / A  < m ,  may be written as A > 
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Fig. 4: As Figure 2 but showing also the liquid drop results. 

A a b s  where 
m i n ~  

Aab, (Csurf+[C~surf+4Ccurv(mn--eO)]l/2) 3 " 
m l n  ~ ~ U ~ - - ~ -  ~ ~- ~ (59) 

Stability at baryon number 30 requires a bulk binding energy in excess of 
65 MeV, which is barely within reach for m,  > 100MeV if, at the same 
time, ud-quark matter shall be unstable. The proposed cosmic ray strangelet- 
candidates with baryon number 370 [32] would for stability require a bulk 
binding energy per baryon exceeding 20 MeV to overcome the combined 
curvature and surface energies. Absolute stability relative to a gas of 5eFe 
corresponds to furthermore using 930 MeV instead of ran, whereas stability 
relative to a gas of A-particles (the ultimate limit for formation of short-lived 
strangelets) would correspond to substitution of mA = 1116MeV. 

Another way of stating the results is to calculate the minimum baryon 
number for which long-lived metastability with respect to neutron emission 
is possible. This requires dEcurv/dA + dEsurt/dA < m n  - ~0, or 

Ameta = (Csurf + [~urf + 3ecurv(mn --eO)]l/2) 3 
mm 3(~n __~0) (60) 

m e t e  To have Aml n < 30 requires mn - ~0 > 30MeV, which is possible, but only 
for a narrow range of parameters. 

This should not, however, defer experimentalists from pursuing the pro- 
posed searches. After all, the MIT bag model is only an approximation, and in 
particular shell effects can have a stabilizing effect. As stressed by Gilson and 
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Jaife [22] the fact that the slope of E/A versus A becomes very steep near 
magic numbers can lead to strangelets that are metastable (stable against 
single baryon emission) even for e ° > 930MeV. Also, the time-scale for en- 
ergetically allowed decays has not been calculated. Pauli-blocking is known 
to delay weak quark conversion in strangelets [33-36], and this will probably 
have a significant influence on the lifetimes. The existence of small baryon 
number strangelets is ultimately an experimental issue. 

3.4 S trange le t s  at F in i te  Temperature  

Whereas the calculations above deal with strangelets at zero temperature, 
the environment in heavy ion collisions is expected to be hot. An advantage 
of the asymptotic mass formula compared to the shell-model calculations is, 
that it can fairly easily be generalized to non-zero temperature. 

The general expression for the thermodynamic potential, I~i, is 

foo dNi 
~2i=Tg~T]o dk--~-ln[1-4-exp(-(e(k)-l~)/T)] (61) 

where the upper sign is for fermions, the lower for bosons, and the density of 
states, ~ k ,  is given by Eq. (21). For massless quarks (including antiquarks) 
an integration gives, per flavor, 

(77r2 4 /~2T2 /~4) ( T  2 # 2 )  
n q = -  - ~ T  + ~ + ~ - ~ 2  V +  ~ + ~ - ' ~ 2  C, (62) 

with a corresponding quark number 

O ~ q _ (  /~3) ju C (63) Nq -- OD ]zT2 + -~ V - 47r2 . 

For gluons 
8~ 2 4 ~g T4V ~T2C. (64) 

= - 45 + 
The total [2 can be found from summing the terms above, and other 

thermodynamical quantities like the free energy and the internal energy can 
be derived. For 3 massless quark flavors of equal chemical potential one finds 

197r2 4 -bB) (41T2 3 2 D = ( - - - ~ T  3 2T 2 - - v + + ) c (65) 

3 2 
F --- ( - - - ~ - T  + ~# + 4--~ ~/~ + \ 72 - 

197r2 4 9 2,.~2 + B  1 /'41 2 3 2 
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Strangelets are in mechanical equilibrium at fixed temperature and baryon 
number when dF = O, corresponding to 1,) 

B Y =  \ 36 + ~ #  i +4---~# V -  \216  +8- -~#  C (68) 

In this case one gets the following expressions for the thermodynamic poten- 
tial, free energy, internal energy and baryon number: 

(41 r ,  1 ,) 
f2 = \108 + ~-~2# C (69) 

1 2 3 4 ( 4 1 T 2 -  ~-~2# ) C (70) F = ( 3 # U T 2 + ' ~ # ) V + \ 1 0 8  

E = 4BV (71) 

A-=(,T2+--~,3]V-#.-~--C4~ 2 . (72) 

Notice that the equations above can also be used in connection with bulk 
SQM, for instance in an astrophysical context, by simply putting C = 0. An 
external pressure can be accommodated by substituting B + Pexternal in place 
of B. 

Dotted curves in Figure 5 shows the energy per baryon for finite temper- 
ature strangelets according to the formulae above. Results are given for fixed 
entropy per baryon, where the entropy is calculated from S - -Of2/OT[v,~. 
These results were first presented in [37]. A similar treatment, including finite 
ms, was published in [38], whereas Ref. [39] shows results for a corresponding 
finite temperature shell model calculation, finding that shell structures are 
washed away at T > 10 MeV, which means that liquid drop model and shell 
model results become indistinguishable at high T (S/A). 

As discussed in more detail in [37] further complications arise from the 
fact, that strangelets must be color singlets. This has no influence on the 
ground state energy for T = 0, but for T > 0 quarks are statistically dis- 
tributed over energy levels, and the color singlet constraint reduces the num- 
ber of possible configurations, forcing the energy up for fixed entropy (see also 
[40]). The effect is important for A < 100 as illustrated in Figure 5. Similar 
effects result from insisting that strangelets shall have a definite momentum. 
These destabilising effects can be important in connection with experiments, 
which inevitably create strangelets with rather high entropies. A tremendous 
job remains to be done in calculating the details of strangelet formation, 
evolution, and decay modes, including realistic non-equilibrium effects, etc.! 

4 SQM in Cosmology 

4.1 Formation,  Evaporation and Boil ing o f  Quark Nuggets  

If the cosmological quark-hadron phase transition was first order, supercool- 
ing may result in concentration of baryon number inside shrinking bubbles of 
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Fig. 5: E / A  as a function of A for strangelets with equal numbers of massless u, d, 
and s quarks for entropy per baryon of 0, 1, 5 and 10, and B I/4 ---- 145MeV. Solid 
curves include color singlet and zero momentum constraints, dashed curves only 
the color singlet constraint, and dotted curves are without constraints. Entropy 
increases upward. For S = 0 (T = 0) the three curves completely overlap (lowest 
solid curve). 

quark phase. The amount  of baryon concentration depends on the permeabil-  
i ty of the "membrane" separating the phases and on the turbulent  removal 
of quarks from the phase boundary. If a quark bubble is able to get rid of 
entropy fast enough (primarily in the form of neutrinos and photons) relative 
to  the rate of baryon number removal, there is a chance of reaching baryon 
number densities in the quark bubbles approaching nuclear mat te r  density. 
In other  words, a quark nugget may form. Whether  or not this actually hap- 
pens, or whether one is left with the less extreme, but  also interesting scenario 
where all of the quarks end up in inhomogeneously distributed neutrons and 
protons, giving non-standard Big Bang nucleosynthesis, has been a topic of 
much debate [2,41-44], and the final word has probably not been said. 

But  even if cosmological quark nuggets do form, they find themselves in a 
very hostile environment with a temperature  of order 100 MeV. Under such 
conditions the nuggets are unstable against surface evaporation [45-48] and 
boiling [49-51]; but  the crucial question from a cosmological point of view is 
whether some nuggets may survive due to the relatively short time-scale for 
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cooling the Universe (the age of the Universe at temperature T being roughly 
--2 

t~ec = TMeV). 
Alcock and Farhi [45] showed that the timescale for complete evaporation 

of a quark nugget was smaller than the age of the Universe at temperature 
T for baryon numbers below 

Aevap ~ 2 × 1056 exp(-3In/T)f~, (73) 

where fn (the phase boundary penetrability of neutrons) was assumed to be 
close to unity. For a homogeneous quark nugget the neutron binding energy 
In = mn -/Ju - 2 ~ a  was estimated to be of order 20 MeV. For such a binding, 
primordial nuggets with baryon number A < 1055 evaporate almost instantly 
when neutrino heating becomes possible at T ~ 50 MeV [45]. 

However, the surface evaporation of neutrons and protons reduces #u and 
~ud, and leads to an increase in ~,. Weak decays, diffusion and convection work 
to counteract this, but the net result is an s-quark enriched layer near the 
surface. (Small nuggets are s-quark enriched throughout their interior). The 
most efficient way to remove the s-quarks is then to emit them in kaons (K °, 
K - )  along with thermal fi and d. A quasi-equilibrium situation arises with an 
effective In ~ 350 MeV [46]. Thereby the baryon number of nuggets surviving 
evaporation is reduced to 1046, and a proper inclusion of reabsorption of 
emitted hadrons (a calculation that has so far not been done) may reduce 
the number somewhat. 

Cosmological nugget evaporation (time-reversed) is closely related to the 
distillation mechanism proposed for strangelet production in relativistic heavy- 
ion collisions [52,53,20,14,54-57]. There strangeness enhancement occurs due 
to emission of K + and K °. 

The calculations described above assume that the penetrability of the 
phase boundary is near 100%. It has been argued that the penetrability may 
be reduced by a few orders of magnitude in a chromoelectric flux tube model. 
This would decrease Aevap by a factor f3, permitting smaller nuggets (pos- 
sibly down to A -- 10 sg) to survive [47,48]. Again, the limit on A may be 
further reduced by reabsorption. 

Primordial nuggets are superheated, and may therefore boil by forming 
bubbles of hadronic gas in their interiors [49]. However, even though boiling 
is thermodynamically allowed, it probably does not play an important role 
for primordial nuggets (or in heavy-ion collisions for that matter), since the 
time-scale is too short for bubble-nucleation to take place [50,51]. The surface 
evaporation described above is thus the decisive mechanism. 

Some authors have argued [58,59], that boiling will take place unless a 
large external pressure (e.g. due to a gravitationally bound shell of nucleons) 
is there to prevent it. Such gravitational stabilization only works for masses 
close to those of stars (A ~ 1057). However, the authors discuss only whether 
boiling is thermodynamically possible, but neglect that there is not enough 
time for the bubbles to nucleate. 
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Apart from trace abundances, one should not expect nuggets smaller than 
103° - 1040 to survive from the early Universe. This however brings one well 
within the causality limit set by the baryon number inside the horizon during 
the cosmic quark-hadron phase transition, 

Ahor ~ 1049 (100~eV)  2 , (74) 

and includes the "most probable" range of baryon numbers originally pre- 
dicted by Witten [2]. It also leaves open the possibility that SQM may ex- 
plain the dark matter problem, and if we understood the details of the quark- 
hadron phase transition, we could even calculate the relative abundances of 
dark and ordinary matter from first principles. 

There is a possibility, that also small traces of primordial nuggets with low 
baryon numbers are left over from the early Universe. Even such traces may 
in fact be "observed" using the astrophysical detectors discussed in Section 
6, or via Big Bang nucleosynthesis, as explained in Section 4.2. 

4.2 Quark Nuggets and Big Bang Nucleosynthesis 

A crucial property of quark nuggets is the positive electrostatic surface po- 
tential of the quark phase, which is due to the quarks being stronger bound 
than the electrons (electrostatic forces are weaker than strong forces). For 
typical nugget parameters the electrostatic potential can be several MeV, 
so except at very high temperatures, protons and nuclei are repelled from 
nuggets, whereas neutrons are absorbed, adding one unit of baryon number. 

This opens the intriguing possibility of using SQM as an energy source 
[14], at least in principle. It also makes it possible to use Big Bang nucle- 
osynthesis as well as the properties of pulsars to place very stringent limits 
on the abundance of quark nuggets in the Universe. 

During Big Bang nucleosynthesis (T < 1 MeV), nuggets absorb neutrons 
but not protons. This means that the presence of quark nuggets reduces the 
neutron-to-proton ratio, thereby lowering the production of 4He. The helium- 
production is very sensitive to the total amount of nugget-area present, and in 
order not to ruin the concordance with observations, one finds [60] that only 

]~23.(~3 h6 f3 nuggets with A > ABSN ~ --  --,ug'" , n are allowed during nucleosynthesis. 
Here Y)nug is the present-day nugget contribution to the cosmic density (in 
units of the critical density), h is the Hubble parameter in units of 100 km 
sec - l  Mpc -1, and .fn < 1 is the penetrability of the nugget surface. Slightly 
stronger limits can be obtained from inclusion of all light nuclei instead of 
4He only [61]. (Ref. [62] found good correspondence with nucleosynthesis for 
a nugget-dominated, I2 : 1 Universe if A ~ 1017, but as shown in [46], this 
was due to an erroneous emission rate for nucleons.) 

The nucleosynthesis calculations leading to A88N neglected inhomogenei- 
ties in the nucleon distribution, and all nuggets were assumed to have the 
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same baryon number. However, the formation of 4He is an on-off process over 
a limited range of A, so the detailed behavior of the inhomogeneities may not 
be so important. 

Note that SQM, in spite of it carrying baryon number, does not contribute 
to the usual nucleosynthesis limit on F2ba~yo,. The SQM baryon number is 
"hidden" in quark nuggets long before Big Bang nucleosynthesis begins, and 
the nuggets only influence nucleosynthesis if they have a big total surface 
area, as described above. 

Evaporating nuggets would lead to strongly inhomogeneous nucleosynthe- 
sis with enhanced heavy-element formation. This aspect has recently been 
studied in [63]. 

4.3 Quark Nuggets as Dark Matter 

Witten [2] argued that quark nuggets might be a natural explanation of 
the cosmological dark matter problem, in principle allowing a calculation of 
the relative amount of dark matter and ordinary baryons. In view of the 
evaporation discussed above, this idea now seems less likely, but is certainly 
not ruled out for A > 103°. Massive quark nuggets decouple from thermal 
equilibrium with the radiation bath very early in the history of the Universe, 
quickly slow down, and behave as cold dark matter in the context of galaxy 
formation. 

Of course it should again be noted, that all of the interesting cosmological 
consequences of the quark-hadron phase transition require the transition to 
be first order, in agreement with recent lattice QCD calculations. 

5 S Q M  in N e u t r o n  Stars; S t r a n g e  S t a r s  

It has been known for many years, that neutron stars may in fact be "hybrid 
stars" consisting of "ordinary" nuclear matter in the outer parts and quark 
matter in the central regions. This will be the case if SQM is metastable 
at zero pressure, being stabilized relative to hadronic matter by the high 
pressure within a neutron star [64-66]. 

If SQM is absolutely stable at zero pressure, an even more intriguing pos- 
sibility opens up, namely the existence of "strange stars" [2,67-69] consisting 
completely of SQM (perhaps apart from a minor crust to be discussed be- 
low). Such strange stars behave quite differently from neutron stars due to 
the unusual equation of state. For massless quarks the total energy density is 
given by p -- pq + B, and the total pressure by P -- Pq - B, where pq is the 
energy density of quarks, and the pressure of the quarks is Pq = pq/3, since 
mass:ess quarks are re:ativistic. ~he equation of state is thus given by 

1 
P = 5 (p - 4B). (75) 
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The exact equation of state taking into account ma ~ 0 is very similar [68] 
since s-quarks are relativistic for low m8 and not present for high ms. (I here 
assume that aa = 0, but recall from Section 2.3, that a non-zero as effectively 
corresponds to a reduction of B). 

The structure of a strange star is calculated from the Oppenheimer-Volkoff 
equation, describing the balance between gravity and pressure gradient, us- 
ing the equation of state given above. The surface of the star corresponds to 
P = 0, a condition fulfilled for p = 4B, which for typical values of B is some- 
what more than the density of ordinary nuclear matter! For stellar masses 
below 1M• (M o is the solar mass) this density is almost constant through- 
out the star, so to a good approximation total mass and radius are related 
by M oc R 3, a relation in striking contrast to ordinary neutron stars, where 
M oc R -3. This means that low-mass neutron stars and strange stars have 
widely different radii, possibly allowing observational distinction. Unfortu- 
nately Nature prefers to form these compact objects with masses near 1.4Mo, 
according to stellar evolution models. For such a mass gravity rather than 
bag pressure plays the dominant stabilizing role, and there is no significant 
difference between neutron star and strange star radii. Also the maximum 
mass given by gravitational instability (the Chandrasekhar limit) is similar, 
of order 2M o. In contrast to ordinary neutron stars, which are unstable for 
masses below 0.1 Mo, strange stars have no minimum mass; the sequence 
continues smoothly to the domain of strangelets. 

For the simple equation of state discussed above, the only natural energy 
scale in the problem is B 1/4. Thus there exists a homology transformation 
between strange star models for different values of B. In particular, the max- 
imum mass of a strange star is given by 

Mmax ---- 2.006B~/2Mo. (76) 

The corresponding minimal radius, maximal moment of inertia, maximal cen- 
tral density, surface density, and minimal rotation period (the so-called Kepler 
period corresponding to mass-shedding at the equator), are given by 

Rml, = 10.94B1~/2km, (77) 

: 1N45/:/--3/2,- /max 2.256 × .. o14 s s cm2, (78) 

Pmax = 1.97 x 1015B145g c m  - 3 ,  (79) 

Psu~ = 4.102 x 1014B14sg cm -3, (80) 

Pmln = 0-66BS~/2ms- (81) 

Bare strange stars (strange stars with quark matter all the way to the 
surface) have quite unusual properties. The density abruptly jumps from 0 
to Psur¢ (Eq. (80)), and the density is almost constant through the interior 
(except when the mass is close to Mmax)- The plasma frequency of the star 
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is huge, meaning that photons with energies below 20MeV are reflected from 
the surface, whereas the star itself can only emit photons with higher energies 
[68,70]. Even more important, because of the strong interaction binding of the 
surface material, the star is not subject to the "Eddington limit", which for 
ordinary neutron stars limits the luminosity to be below 1038 erg/s (for higher 
luminosities the radiation pressure would exceed the gravitational attraction 
and expel the surface layers). As discussed below, this could lead to important 
"applications" of strange stars. 

This approach may however be oversimplified because real strange stars 
may have surfaces more like ordinary neutron stars. In particular, a solid 
crust of ordinary material may form from accretion by the strange star after 
formation, or from material that was not converted during neutron star burn- 
ing (see Section 5.5). Such a crust may be held up by the extreme, outward 
directed electrostatic potential of 1017-1018V/cm, created by the electron at- 
mosphere with a thickness of a few hundred Fermi. This atmosphere merely 
expresses that the electrostatic binding of electrons is weaker than the strong 
binding of quarks; therefore the electron distribution does not end abruptly 
like that  of quarks (the detailed structure was found from a Thomas-Fermi 
calculation by Alcock, Farhi and Olinto [68]; see also [71]). 

The electrostatic potential can sustain a significant crust of ordinary neu- 
tron star material. The limit is given by the neutron drip density (4 x 1011 
gcm-3), above which neutrons drip out of nuclei and would be swallowed 
by the quark phase. This crust may be decisive for interpretation of pulsar 
behavior (Section 5.2). 

As emphasized by Glendenning, Kettner and Weber [72,73], the existence 
of crusts not only changes the mass-radius relation for strange stars, but also 
opens a rich plethora of new stellar configurations. In particular, one may 
have a sequence of "strange dwarfs", much like white dwarfs except for an 
SQM core. At present there is no well-studied model for formation of such 
strange dwarfs. 

Another possibility for formation of a (solid?) crust has been suggested 
in [74]. This mechanism relies on the existence of stable, low-baryon number 
strangelets (in this context sometimes denoted "quark-alphas" for the A -- 6 
strangelet analog of a helium nucleus [75]) which could act as "nuclei" in 
the surface region. Whereas this possibility may seem less likely from the 
discussion in Section 3, it can not be entirely ruled out. 

Finally, it is worth noticing that Glendenning [76] has argued that  neu- 
tron stars may contain regions with mixed quark and hadron phases. (This 
possibility was missed in earlier studies due to an erroneous assumption of lo- 
cal rather than global charge neutrality). Depending on parameters the mixed 
phase region can occupy a significant fraction of the star, and may show un- 
usual topologies (plate-like or cylinder-like structures, rather than just spher- 
ical quark bubbles embedded in hadrons or vice versa [77-79]). 
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Studies of strange stars have not been pursued to the degree of detail 
known for ordinary neutron stars, and it is premature to draw any detailed 
conclusions. However, in the following, I shall look at some of the properties 
expected and emphasize the possible observable differences between neutron 
stars and strange stars. 

5.1 Neutr ino Cooling 

A distinction between strange stars and neutron stars was for a long time 
believed to be a much more rapid cooling of SQM due to neutrino emitting 
weak interactions involving the quarks [68]. Thus a strange star was presumed 
to be much colder than a neutron star of similar age, a signature potentially 
observable from x-ray satellites. Only a few speculative mechanisms, such as 
the existence of kaon condensates might mimic the speed of quark matter  
neutrino cooling. Recently the story has been complicated considerably by 
the finding that  ordinary neutron f~-decay may be energetically allowed in 
nuclear matter [80], so that the cooling rate can be comparable to that of 
SQM. For this reason I shall not discuss the issue here, but refer the reader 
to an excellent review of neutron star cooling by Pethick [81], and a recent 
reinvestigation of strange star cooling by Schaab et  al. [82]. 

5.2 P u l s a r  Gl i tches  

One important feature seems to distinguish strange stars from neutron stars 
in a manner with observable consequences, and that is the distribution of 
the moment of inertia inside the star. Ordinary neutron stars older than 
a few months have a crust made of a crystal lattice or an ordered inho- 
mogeneous medium reaching from the surface down to regions with density 
2 × 1014 g cm -s.  This crust contains about 1% of the total moment of inertia. 
Strange stars in contrast can only support a crust with density below the 
neutron drip density (4.3 × 1011 g cm-3). This is because free neutrons would 
be absorbed and converted by the strange matter. Such a strange star crust 
contains at most a few times 10 -5 of the total moment of inertia. This is 
an upper bound, since the strange star may have no crust at all, depending 
on its prior evolution. And recent studies of the mechanical balance between 
electric and gravitational forces on the crust indicate, that only densities up 
to perhaps 1011gcm -3 may be achieved [83,84]. 

As stressed by Alpar [85], and also pointed out by Haensel, Zdunik, and 
Schaeffer [67], and by Alcock, Farhi, and Olinto [68], this difference in the 
moment of inertia stored in the crust of neutron stars and strange stars seems 
to pose significant difficulties for explaining the glitch-phenomenon observed 
in radio pulsars with models based on strange stars. Glitches are observed as 
a sudden speed-up in the rotation rate of pulsars. The fractional change in 
rotation r a t e / )  is A / ) / ~  ~ 10-6--10 -9, and the corresponding fractional 
change in the spin-down ra te / )  is of order A ~ / ~  ~ 10-2--10 -3. Regardless 



Astrophysics of Strange Quark Matter 189 

of the detailed model for the glitch phenomenon these jumps must involve the 
decoupling and recoupling of a component in the star containing a significant 
fraction, I i / I ,  of the total moment of inertia; f l i / I  = A I / I  ~ A ~ / ~  
10-s--10 -~ (Alpar actually argued that f I j I  ~ A ~ / ~  ~., 10-2--10 -3, 
where ] is the fractional change in Ii, but this is not necessary [86]). This 
role is played by the inner crust of an ordinary neutron star, but the crust 
around a strange star is smaller; less than a few times 10-5Mo with Icrust/I 
around a few times 10 -5 for ordinary neutron star masses of 1.4M o (higher 
for less massive stars). These numbers are based on models by Glendenning 
and Weber [86] assuming a maximum mass crust, i.e. a crust reaching neutron 
drip density at the base, so it seems fair to conclude, that strange stars in 
fact may have sufficiently massive crusts to account for glitches, but that 
parameters in that case are fairly tightly constrained. 

Other possibilities for glitches in strange stars could involve a crust com- 
posed of strangelets (cf. the "quark-alpha" scenario in [74]), not to mention 
the possibility of a quark-hadron mixed phase [76-79]. There is still a lack of 
any detailed model for how the magnetic field structure and other crucial as- 
pects of a pulsar can be modeled for strange stars. Presumably a strange star 
cannot do the job without significant structure, such as a crust and/or su- 
perfluidity/superconductivity in certain regions. These issues have only been 
very superficially studied and need further consideration. The present lack of 
such models should not be used to dismiss the possibility of strange stars. 

5.3 Strange Star Oscillation and Maximum Rotation Rate 

One of the most interesting differences between neutron stars and strange 
stars is related to the damping of instabilities. 

First it should be noticed that a strange star is a very stable system. 
Strange stars may have radial oscillations with a fundamental period of 0.06- 
0.3ms [87], but these are characterized by rapid damping in a matter of 
seconds [88-91]. This is due to the extremely high viscosity of SQM. 

The large viscosity also plays a role in setting the maximum rotation 
limit for strange pulsars (or hybrid stars with SQM cores). The ultimate 
rotation limit corresponds to mass-shedding from the equator of the star 
(this is called the Kepler limit and is of order 0.6 msec for a strange star, Eq. 
(81); see Zdunik [92] for a review). But before reaching such rotation rates, 
the pulsars become unstable to non-radial deformations and are slowed down 
by emission of gravitational radiation. Shear and bulk viscosities tend to 
stabilize the star against these instabilities [89,93], and the high value for the 
bulk viscosity may mean that strange pulsars in contrast to ordinary pulsars 
can reach submillisecond periods [91]. Thus the discovery of very fast pulsars 
may be an indication favoring the existence of strange stars. 

And even more exciting, it has been shown over the last few months, 
that ordinary neutron stars when they are young and hot are subject to a 
new class of instabilities, called r-mode instabilities [94-96], which during 
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their first year of existence slows the rotation rate to only a few per cent 
of the Kepler limit. Rotation periods faster than 10 m~sec are unlikely after 
that, until some pulsars at a much later age may be spun-up by angular 
momentum transfer in binary systems, and thereby explain the rapid old 
pulsars with periods down to 1.56 msec. In contrast, strange stars are not 
subject to these instabilities until they are thousands of years old, and even 
then only for periods faster than 2-3 msec [97]. This seems to imply, that  
the most robust signature for the existence of strange stars (or neutron stars 
with a substantial fraction of high viscosity quark matter in the interior) is to 
search for young pulsars with rotation periods below, say, 5 msec (even stars 
with longer periods may candidate). These can not be ordinary neutron stars, 
whereas quark matter is the only substance known to have a bulk viscosity 
high enough to offer an explanation. 

The bulk viscosity of strange quark matter depends on the rate of the 
non-leptonic interaction 

u +  d ~ s + u. (82) 

(The rate for this reaction has recently been calculated by Madsen [35], and 
Heiselberg [36]; earlier studies, including that of Ref. [33] are incorrect). This 
reaction changes the concentrations of down and strange quarks in response 
to the density changes involved in vibration or rotational instabilities, thereby 
causing dissipation. This dissipation is most efficient if the rate of reaction 
(82) is comparable to the frequency of the density change. If the weak rate 
is very small, the quark concentrations keep their original values in spite of 
a periodic density fluctuation, whereas a very high weak rate means that the 
matter immediately adjusts to follow the true equilibrium values reversibly. 
But in the intermediate range dissipation due to PdV-work is important. 

The importance of dissipation due to Eq. (82) was first stressed by Wang 
and Lu [88] in the case of neutron stars with quark cores. These authors made 
a numerical study of the evolution of the vibrational energy of a neutron star 
with an 0.2M o quark core, governed by the energy dissipation due to Eq. (82). 
Sawyer [89] expressed the damping in terms of the bulk viscosity, a function 
of temperature and oscillation frequency, which he tabulated for a range of 
densities and strange quark masses. Sawyer's tabulation has later been used 
in studies of quark star vibration [90], and of the gravitational radiation 
reaction instability determining the maximum rotation rate of pulsars [93]. 
The latter study concluded, that the bulk viscosity is large enough to be 
important for temperatures exceeding 0.01 MeV, but that it should be a few 
orders of magnitude larger to generally dominate the stability properties. 

However, as has been pointed out in [91], the bulk viscosities calculated 
in [89] depend on the assumption, that the rate of Eq. (82) can be expanded 
to first order in 5# --/~8 - ~ud, where Pi ~ 300MeV are the quark chemical 
potentials. This assumption is not correct at low temperatures (27rT << JV), 
where the dominating term in the rate is proportional to 5# 3 . Furthermore, 
the rate in [89] is too small by an overall factor of 3, and a discrepancy of 2-3 
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orders of magnitude, perhaps due to unit conversions, appears as well. Taken 
together, these effects lead to an upward correction of the bulk viscosity by 
several orders of magnitude, and thereby increases the importance for the 
astrophysical applications. The non-linearity of the rate also means, that 
the bulk viscosity is no longer independent of the amplitude of the density 
variations. The resulting bulk viscosity is (in cgs-units, with m,,  T, and 
#d ~ 235MeV(p/P, uc) 1/3 in MeV, and the oscillation frequency w in s -1) 

¢ ~ 3 . 0 9 x  iv rn, w \ 3 ~  Vo +47r2T2 g c m - l s - l ' ( 8 3 )  

For typical values (ms = 100 MeV,/~d = 300MeV, w = 2x 104 s -1) this is ¢ 
1.6 x 1028 [93(Av/vo) ~ + 39T 2] g c m - l s  - ' ,  where Av/vo is the perturbation 
amplitude. 

For a star of constant density (an excellent approximation for a strange 
star, except very close to the gravitational instability limit) Sawyer [89] esti- 
mated the damping time as 

rD ~ 1.5 x 1025~-1s. (84) 

Thus, even at very low temperatures, high amplitude oscillations are damped 
in fractions of a second, and those of low amplitude in a matter of minutes, 
if one takes into account, that the temperature of the star increases due to 
the heat released by viscous dissipation, which can speed up the damping of 
vibrations. 

The discussion above was based on rather crude estimates [91]. A detailed, 
general relativistic, numerical treatment along the lines of Cutler et at  [90] 
is clearly needed. 

As mentioned previously, viscosity also plays an important role in setting 
the maximum rotation rate of pulsars. Gravitational radiation reaction in- 
stabilities (as opposed to "Keplerian mass-shedding") is supposed to set the 
ultimate rotation rate limit, but the larger the damping by shear and bulk 
viscosity is, the closer the rate can get to the Keplerian limit given in Eq. 
(81). 

The shear viscosity of SQM due to quark scattering has recently been 
recalculated by Heiselberg and Pethick [98]. Their results for T << # can be 
written as )14 , 

\ a s  ] ~ T-5/Sgcm-ls- l"  (85) 

Investigations by Colpi and Miller [93] based on the older viscosities in [89,991 
indicated, that the minimal rotation period of strange stars might be set by 
the gravitational radiation reaction instability of m -- 2 or rn = 3 modes at 
or just below 1 millisecond. With the new, much larger, viscosities, the non- 
axisymmetric instabilities will be suppressed, and it is not unreasonable to 
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expect, that the maximum rotation frequency of strange stars will be close to 
the Keplerian limit. Detailed numerical calculations like those in Colpi and 
Miller [93], including the new viscosities and effects of dissipative heating, 
are required to settle the issue, but they are complicated by the non-linear 
behavior of the new bulk viscosity. 

Whether or not the ultimate rotation period of strange stars can be signif- 
icantly smaller than for neutron stars is of importance for old pulsars spun-up 
by accretion. But perhaps the most clear-cut signature for the existence of 
strange stars would be the (almost) lack of sensitivity to r-mode instabilities, 
which as mentioned earlier allows young strange stars to rotate much faster 
than young neutron stars [97]. 

5.4 G a m m a - R a y  Burs te rs  

Strange stars because of their high surface density, strong binding (making 
it possible to circumvent the Eddington limit), and special emission prop- 
erties have been suggested as explanations for some of the more mysterious 
cosmic events, namely 7-ray bursters. These are bursts of 7-rays of a few 
seconds duration, coming from unidentified sources which are presumably at 
extragalactic distances. 

No consensus exists concerning the nature of these bursts, but Alcock, 
Farhi and Olinto [100] suggested a detailed model for the most prominent of 
the bursters, the one on 5 March 1979. Their model is based on an impact 
of a 10-SM® lump of SQM on a rotating strange star, and the authors are 
able to explain most of the observations concerning energetics and time-scales 
under the assumption that the burster is located in a supernova remnant in 
the Large Magellanic Cloud, as position measurements seem to indicate. An 
alternative model for this source and for soft q-repeaters in the framework of 
strange stars with "quark-alpha" surface properties was suggested in [101]. 
Other strange star models for soft "/-repeaters and x-ray bursters include 
[102,103]. 

q-ray bursters at truly cosmological distances could be due to collisions 
of two strange stars in binary systems [104], each collision releasing 1050 ergs 
in the form of gamma rays over a time-scale of 0.2 s. 

There are, however, literally hundreds of different models for q-bursts, 
and in spite of improved observational data the interpretation is at present 
unclear. 

A recent identification of the x-ray source Her X-1 as a strange star [105] 
was unfortunately based on incorrect use of bag model parameters [106]. 

5.5 Formation o f  Strange Stars 

If strange quark matter is stable, strange stars may be formed during super- 
nova-explosions, and neutron stars can be converted to strange stars by a 
number of different mechanisms, such as pressure-induced transformation to 
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uds-quark matter via ud-quark matter, sparking by high-energy neutrinos, or 
triggering due to the intrusion of a quark nugget. These and other possibilities 
were described by Alcock, Farhi, and Olinto [68]. 

As soon as a lump of strange matter comes in contact with free neutrons it 
starts converting them into strange matter. The burning of a neutron star into 
a strange star was discussed by Baym et  al. [107] and Olinto [108], and it was 
shown that the star would be converted on a rather small time-scale set by 
quark diffusion and flavor-changing weak interactions. (The huge difference 
in the speed of the conversion front found in these papers is partly due to 
the omission of a factor c 1/2, where c is the speed of light, in equation (6) of 
Baym et  al.) Later studies [109,110] found burning times in the range of 1- 
103 seconds under various parameter assumptions (see also Olinto [111] for a 
review). For the fastest burning times, the energy liberated may be important 
for the supernova mechanism and supernova neutrino bursts. Horvath and 
Benvenuto [112] have questioned the stability of "slow" neutron combustion 
and suggested that the conversion takes place much faster as a detonation. 
So far, the investigations of neutron star burning have been rather crude, 
neglecting many aspects of transport theory, heat conduction etc. A detailed 
study of this phenomenon would be interesting. 

Perhaps the most likely mechanisms for initiating the formation of a 
strange star involves either a seed of SQM in the star (see Section 6), or ther- 
mal formation of quark matter bubbles. Thermal triggering of neutron star 
transformation may be understood qualitatively in terms of simple boiling 
theory. Before considering a more realistic equation of state it is instructive 
to study the boiling of a pure neutron gas into quarks. The quark bub- 
bles formed consist of u and d quarks in the ratio 1:2; only later weak in- 
teractions may change the composition to an energetically more favorable 
state. Thus quark chemical potentials are related by #d ---- 21/a~u, and 
Dn = Du + 2 D d  = (1 + 24/3)#u, assuming chemical equilibrium across the 
phase boundary. 

The free energy involved in formation of a spherical quark bubble of radius 
R and volume V is given by 

F = - A P V  + 87rTR (86) 

+ (88) 7 -- 87r2 

The free energy has a maximum at the critical radius 

rc = ( 2 " y I A P )  1/2 (89) 

where 

A P  = P~d - Pn  - #~  + #2 
47¢ 2 

and the curvature energy coefficient 

B - P .  (87) 
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and the corresponding free energy 

We =- F(rc )  = 161r'yrc/3 (90) 

is the  work required to form a bubble of this radius which is the smallest  
bubble capable of growing. I t  is a s tandard  assumption in the theory  of bubble 
nucleation in first order phase transit ions tha t  bubbles form at  this par t icular  
radius a t  a ra te  given by 2 

T~ ~, T 4 e x p ( - W e / T ) .  (91) 

The  simplest possible equation of s tate  for the neutron gas is t ha t  of a 
zero tempera ture ,  nonrelativistic degenerate Fermi-gas, where 

157r2m n (92) 

and the baryon density 
- 

nB = 3rr2 (93) 
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Fig. 6: Upper limits on the bag constant allowing thermal nucleation of quark matter  
bubbles in neutron stars as a function of baryon number density in the hadron 
phase. To the left are shown results for the simple neutron gas model discussed in 
the text. To the right for a more realistic mean field approximation. See text for 
further explanations. 

A necessary condition for boiling is tha t  ZiP > 0. This  leads to an upper  
limit on the bag constant,  Br, a~, from Eq. (87) as i l lustrated in Fig. 6 (from 

2 The prefactor may differ from T 4, but this is of minor practical importance due 
to the dominant exponential. 



Astrophysics of Strange Quark Matter 195 

[ll3]--the corresponding limit for the Bethe-Johnson equation of state is 
shown for comparison; it is seen to be very similar). This was also used as a 
criterion for neutron star stability by Krivoruchenko and Martemyanov [114]. 

Also shown in Fig. 6 is the limit on the bag constant below which bub- 
ble nucleation takes place at rates exceeding 1 km-SGyr -1 and 1 cm-as - l ,  
respectively, for temperatures of 1, 2, 3 and 10 MeV (Bmax can be consid- 
ered as the limit for infinite temperature). One notes that the possibility of 
bubble nucleation is fairly insensitive to the temperature as soon as T ex- 
ceeds a few MeV, whereas thermally induced bubble nucleation is impossible 
for T < 2MeV (recall from Section 2.2 that the stability of ordinary nuclei 
against decay into quark matter requires that B > (145MeV)4). This con- 
firms an estimate in [115] (see also [116,117]). The range of bag constants for 
which a hot neutron star may transform into quark matter is thus roughly 
145MeV < B 1/4 < 155MeV. 

Results for a more realistic mean field equation of state are also shown in 
the Figure (see [113] for further details). While the detailed numbers change, 
the overall conclusion does not. Quark matter bubbles may nucleate (possibly 
followed by burning of the star into SQM) in neutron stars/supernovae if the 
bag constant is low, and if the temperature exceeds a few MeV (thus the 
process is most likely during the supernova explosion itself). Should thermal 
nucleation not take place, one of the other mechanisms mentioned above must 
be relied on. Apart from seed-induced burning, all of these are likely to be 
much less efficient than thermal nucleation. 

6 S Q M  i n  C o s m i c  R a y s  

De Rfijula and Glashow [118] argued that unusual meteor-events, earth- 
quakes, etched tracks in old mica, in meteorites and in cosmic-ray detectors 
might be used for observation of quark nuggets hitting the Earth or its at- 
mosphere. In particular they were interested in the possibility of detecting a 
galactic dark matter halo of nuggets, where typical velocities would be a few 
hundred kilometers per second, given by the depth of the gravitational po- 
tential. Even if nuggets only survived from the Big Bang in small numbers, 
or were spread in our galaxy by secondary processes such as strange star 
collisions, there could be a potentially observable flux of nuggets hitting the 
Earth. The only data actually investigated in their paper came from a neg- 
ative search for tracks in ancient mica, and corresponded to a lower nugget 
flux limit of 8 × 10 -19 cm -2 s -1 sr -1, for nuggets with A > 1.4 × 1014 (smaller 
nuggets would be trapped in layers above the mica samples studied). This can 
also be expressed as an excluded range of 1.4 × 1014 < A < 8 × 102Spu4v25o, 
where v --- 250kin s-lv2s0 and p - 10-24g cm-Sp24 are the typical speeds and 
mass density of nuggets in the galactic halo. The speed is given by the depth 
of the gravitational potential of our galaxy, whereas p24 ~ 1 corresponds to 
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the density of dark matter. In these units the number of nuggets hitting the 
Earth per cm 2 per second per steradian is 6.0 × 105A-lp24v250. 

Later investigations have improved these flux limits somewhat. These 
Earth-based flux-limits [119,120] are shown in Figure 7. It is seen that quark 
nuggets with 3 × 107 < A < 5 x 102s seem incapable of explaining the dark 
halo around our galaxy, but a low flux either left over from the Big Bang or 
arising from collision of strange stars cannot be ruled out. If the strange mat- 
ter hypothesis is valid, one should indeed expect a significant background flux 
from stellar collisions, since several pulsars are members of binary systems, 
where the two components are ultimately going to collide. If such collisions 
spread as little as 0.1M o of non-relativistic strangelets with baryon number 
A, a single collision will lead to a flux of 10-6A-Iv250 cm-2s-lsterad -~, 
assuming strangelets to be spread homogeneously in a halo of radius 10 kpc. 

Such a flux-level is below the sensitivity of present experiments, but Mad- 
sen [121] suggested that neutron stars and their stellar "parents" may be used 
as alternative large surface area, long integration time detectors. The reason 
is simple. The presence of a single quark nugget in the interior of a neutron 
star is sufficient to initiate a transformation of the star into a strange star 
[2,68,107]. The time-scale for the transformation is short, between seconds 
and minutes [107,108,111,109,110], so observed pulsars would have been con- 
verted long ago, if their stellar progenitors ever captured a quark nugget, or 
if the neutron stars themselves absorbed one after formation. 

The rate at which quark nuggets hit the surface of a star depends on 
the phase space distribution of nuggets relative to the star. For an infinite 
bath of positive energy nuggets with an isotropic, monoenergetic distribution 
function, the number accretion rate is given by 

F - 1.39 x 1030 s -1A -1MRp24v~510 [1 + O.164V~5oRM-'], (94) 

where M and R denote the stellar mass and radius in solar units. For the 
Sun the second term in parenthesis (the geometrical term) contributes only 
slightly to the accretion rate, and the contribution is even less important for 
more massive stars and for compact objects like white dwarfs and neutron 
stars (in contrast, the geometrical term dominates for accretion onto the 
Earth). In the following I therefore only take the first term (gravitational) 
into account. 

To convert a neutron star into strange matter a quark nugget should not 
only hit a supernova progenitor but also be caught in the core. Similarly, 
nuggets hitting a neutron star after its creation have to penetrate the outer 
layers and reach the neutron drip region. These issues were discussed in [121]. 

A main sequence star is capable of capturing quark nuggets with baryon 
numbers below ASTOP, where 

ASTOP = 5.0 × 1031M -t'8. (95) 

This works for non-relativistic nuggets, which are basically braked by inertia, 
i. e. they are slowed down by electrostatic scatterings after plowing through a 
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column of mass similar to their own, and afterwards settle in the stellar core. 
In part icular  it is valid for nuggets moving with virial speed in our galactic 
halo. Relativistic nuggets, like those reported in some cosmic ray observations,  
may  be destroyed after collisions with nuclei in the stellar a tmospheres ,  and  
so the limit can not be used immediately, but  it is worth noticing, t ha t  even 
a t iny fraction of a nugget surviving such an event and settling in the s ta r  is 
sufficient to convert the neutron s tar  to a strange star. 
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Fig. 7: Astrophysical flux-limits [121] compared to the flux expected for a galactic 
halo of nuggets being the dark matter [118], and to the experimental results for 
cosmic rays [119,120]. The three horizontal parts of the solid curve correspond t o  
capture in main sequence supernova progenitors, post main sequence stars, and 
neutron stars younger than the Vela pulsar (10 a years). 

For nuggets with A < ASTOP the sensitivity of main sequence s tars  as 
detectors is remarkable,  as it is given by the limit of one nugget hi t t ing the 
surface of the supernova progenitor in its main sequence lifetime! Conver ted  
into a flux, jr ,  of nuggets hitt ing the Ea r th  per cm 2 per sec per s teradian,  it 
corresponds to 

~" = 4 X 10-42M°'lv250. (96) 

As can be seen from Figure 7, this is a factor of 102°-104o more sensitive 
than  ordinary experiments! 

If it is possible to prove tha t  some neutron stars  are indeed neutron s tars  
ra ther  than  strange stars,  the sensitivity of the astrophysical  detectors  rules 
out quark nuggets as being the dark mat te r  for baryon numbers  in the  range 
A < 1034-zs. And it questions the whole idea of stable s trange quark  mat te r ,  
since it seems impossible to avoid polluting the interstellar med ium with 
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nuggets from strange star collisions or supernova explosions at fluxes many 
orders of magnitude above the limit measurable in this way. 

/)ton the other hand SQM is stable, then all neutron stars are likely to be 
strange stars, again because some pollution can not be avoided. 

The Sun would in this way accrete 3.7 x lO-2°p24v~51M®/year, or a total 
of lO-l°p24v~1Mo in its total lifetime on the main sequence. Very low-mass 
nuggets collected near the solar center in this manner might have an impact 
on the energy production [122], but the effect is negligible unless the electro- 
static barrier at the nugget surface is much smaller than expected, or unless 
very special circumstances allow nuggets to catalyze nuclear reactions [21]. 

The Sun will develop into a white dwarf in about 6 x 10 ~ years. As just 
mentioned, the Sun would accrete a core of lO-lOp24v~51Mo in its total life- 
time on the main sequence. Such accretion is too small to lead to a strange 
dwarf distinguishable from an ordinary white dwarf as suggested in [72,73]. 
However, higher concentrations could occur if quark nuggets were somehow 
mixed into the gas cloud from which the star originally formed. Whether this 
is likely to happen depends strongly on assumptions regarding the velocity 
distribution of the nuggets formed, and the possibility of interactions with 
the gas [123]. 

Most of the discussion above dealt with halo nuggets moving at non-relati- 
vistic velocities. Relativistic nuggets are not as easily detected using neutron 
stars, since they may be destroyed in collisions with nuclei in the star. On 
the other hand two relativistic candidate events with charge Z = 14 and 
mass A ~ 370 were found in a balloon experiment by Saito et al. [32]. This 
corresponds to a rather high flux, and it is not quite clear how to produce 
such nuggets, though spallation of larger nuggets originating from strange 
star collisions may be involved [124]. 

Quark nuggets have also been suggested as candidates for the Centauro 
cosmic-ray events [2,125,126]. Centauro primaries may have a flux as high as 
10-14cm-2s -1 and A ~ 103. Since Centauro primaries move at relativistic 
speeds they are destroyed by inelastic collisions when hitting a star, so the 
flux-limits given above cannot directly be used to rule out quark nuggets as 
Centauro primaries. However the mechanism producing the primaries must 
be tuned so that it only produces relativistic quark nuggets in order not to 
conflict with the flux-limits in Figure 7 for non-relativistic nuggets. 

7 C o n c l u s i o n  a n d  O u t l o o k  

The possible stability of strange quark matter is a fundamentally exciting 
idea. Should it turn out to be true, many textbooks in nuclear, particle 
and astrophysics will need revisions, but our daily lives will not be changed 
dramatically, apart from possible technological applications such as energy 
production and disposal of radioactive waste [14,127]. There are two main 
reasons why stability of SQM is possible without drastic consequences. The 
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first reason is that stability requires a certain minimum strangeness content, 
so ordinary nuclei do not decay into strangelets. The second reason is the pos- 
itive electrostatic potential of the quark phase in a strangelet, which means 
that  you could walk around with a lump of SQM in your pocket without 
being swallowed. 

While heavy-ion collisions is the way to look for small (meta)stable strange- 
lets, astrophysics gives a possibility for testing larger (and therefore more 
stable) SQM-systems. Direct cosmic ray searches is an obvious way to look 
for intermediate baryon numbers in the form of relativistic or non-relativistic 
lumps produced in strange star collisions, and for leftovers from the Big 
Bang. The latter can only exist for very high baryon numbers (cf. Section 4), 
whereas a galactic background of the former seems unavoidable if the strange 
matter hypothesis is correct. 

Strange stars may be the most promising place to look for SQM, but 
as explained in Section 5 it is actually hard to find clear-cut ways of dis- 
tinguishing strange stars from neutron stars, unless one finds an object of 
very low mass. Pulsar rotation properties at present seem to provide the best 
clue, in particular after the finding that young strange stars in contrast to 
neutron stars are not braked by gravitational wave emission due to r-mode 
instabilities. 

If SQM is only metastable, heavy-ion physicists may still have a chance of 
finding it; the cosmological quark-hadron phase transition may still lead to 
inhomogeneities of importance for Big Bang nucleosynthesis (without quark 
nuggets left over); and neutron stars may still have strange matter cores. 

In any case the confirmation or disproof of the existence of (meta)stable 
strange quark matter via experiments and astrophysical tests makes it pos- 
sible to limit strong interaction parameters that are otherwise difficult to 
probe. This in itself is a good reason for continued studies of the physics and 
astrophysics of strange quark matter. 
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Out  of  Equi l ibr ium T h e r m a l  Field T h e o r i e s  - 
E l iminat ion  of  P inch ing  Singulari t ies  
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A b s t r a c t .  We analyze ill-defined pinch singularities characteristic of out of equi- 
librium thermal field theories. We identify two mechanisms that eliminate pinching 
even at the single self-energy insertion approximation to the propagator: the first 
is based on the vanishing of phase space at the singular point (threshold effect). 
It is effective in QED with a massive electron and a massless photon. In massless 
QCD, this mechanism fails, but the pinches cancel owing to the second mecha- 
nism, i.e., owing to the spinor/tensor structure of the single self-energy insertion 
contribution to the propagator. The constraints imposed on distribution functions 
are very reasonable.The same mechanism eliminates pinching from the resummed 
Schwinger-Dyson series. 

1 I n t r o d u c t i o n  

Out of equilibrium thermal field theories have recently at t racted much in- 
terest. From the experimental point of view, various aspects of heavy-ion 
collisions and the related hot QCD plasma are of considerable interest, in 
particular the supposedly gluon-dominated stage. 

Contrary to the equilibrium case [1,2] where pinch, collinear, and infrared 
problems have been successfully controlled [3-6], out of equilibrium theory 
[7-9] has suffered from them to these days. However, progress has been made 
in this field, too. 

Weldon [10] has observed tha t  the out of equilibrium pinch singularity 
does not cancel; hence it spoils analyticity and causality. The problem gets 
worse with more than  one self-energy insertions. 

Bedaque has argued that  in out of equilibrium theory the time extension 
should be finite. Thus, the time integration limits from -c~  to +oo, which are 
responsible for the appearance of pinches, have to be abandoned as unphysical 
[11]. 

Le Bellac and Mabilat [12] have shown that  pinching singularity gives a 
contribution of order g2~n, where ~n is a deviation from equilibrium. They 
have also found tha t  collinear singularities cancel in scalar theory, and in 
QCD using physical gauges, but not in the case of covariant gauges. Ni~gawa 
[13] has found that  the pinchlike term contains a divergent part  tha t  cancels 
collinear singularities in the covariant gauge. 

Altherr and Seibert have found that  in massive g2¢~ theory pinch singu- 
larity does not occur owing to the kinematical constraint [14]. This result is 
restricted to the case of one-loop self-energies. 
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Altherr has suggested a regularization method in which the propagator is 
modified by the width q which is an arbitrary function of momentum to be 
calculated in a self-consistent way. In g2~b4 theory, for small deviations from 
equilibrium, 7 was found to be just the usual equilibrium damping rate [15]. 

This recipe has been justified in the resummed Schwinger-Dyson series in 
various problems with pinching [16-20]. 

Baler, Dirks, and Redlich [16] have calculated the 7r - p self-energy contri- 
bution to the pion propagator, regulating pinch contributions by the damp- 
ing rate. In subsequent papers with Schiff [17,18] they have calculated the 
quark propagator within the HTL approximation [21-23]; in the resummed 
Schwinger-Dyson series, the pinch is naturally regulated by I r n ~ n .  

Carrington, Defu, and Thoma [19] have found that no pinch singularities 
appear in the HTL approximation to the resummed photon propagator.  

Ni~gawa [20] has introduced the notion of renormalized particle-number 
density. He has found that, in the appropriately redefined calculation scheme, 
the amplitudes and reaction rates are free from pinch singularities. 

By pinching singularity we understand the contour passing between two 
infinitely close poles: 

(x + i )(x - (1) 

where x = q2 _ m 2. It is controlled by some parameter, e.g., e. For finite 
e, the expression is regular. However, when e tends to zero, the integration 
path is "pinched" between the two poles, and the expression is ill-defined. 
Integration gives an e -1 contribution plus regular terms. By performing a 
simple decomposition of (x 4- ie) -1 into P P ( 1 / x )  T irr6(x), one obtains the 
related ill-defined 62 expression. 

The following expression, which is similar to (1), corresponds to the re- 
sumed Schwinger-Dyson series: 

f dx (x - eR(x)  + i )(x - E Cx) - (2) 

where w(x)  and ~(x) (which appears in (3)) are, respectively, proportional 
to f2(x) and/ ) (x) ,  where f2(x), .En(x) ,  and/ ) (x)  are the components of the 
self-energy matrix to be defined in Sec. III. 

In expression (2), pinching is absent [16-20] if Im2~R(Xo) ~ 0 at a value 
of xo satisfying Xo - R e E n ( X o )  = O. 

The expression corresponding to the single self-energy insertion approxi- 
mation to the propagator is similar to (2): 

f dx (x + ie) (x  - iE)" (3) 

One can rewrite the integral as 

T + (4) x - ie x 
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If it happens tha t  

lira ~(x)  _ K < o0, (5) 
z--~0 X 

then  the integral (4) decomposes into two pieces that ,  although possibly di- 
vergent, do not suffer from pinching. 

There  are two cases in which the function ~(x)  is even identically zero in 
the vicinity of the x ---- 0 point: in thermal  equilibrium, because of detailed 
balance relations; in massive g2~b3 theory out of equilibrium, owing to the 
mass shell condition [14]. The latter mechanism also works in out  of equilib- 
rium QED if a small photon mass m~ is introduced. However, this elimination 
of pinching can be misleading: the domain of x, where ~(z)  = 0, shrinks to  a 
point as m r -~ 0. We shall show that  the elimination of pinching also occurs 
in the m~ = 0 case. 

In this paper  we identify two mechanisms leading to relation (5). They  
are based on the observation that  in the pinchlike contribution loop particles 
have to be on mass shell. 

The  first mechanism is effective in out of equilibrium QED: in the pinchlike 
contribution to the electron propagator,  phase space vanishes linearly as x -~ 
0 . In the pinchlike contribution to the photon propagator,  the domain of 
integration is shifted to infinity as x -~ 0. For distributions disappearing 
rapidly enough at large energies, the contribution again vanishes linearly in 
the x -4 0 limit. This mechanism is also valid in QCD in the cases with 
massive quarks. 

In out  of equilibrium massless QCD, phase space does not vanish, but  
there is an alternative mechanism: the spinor/ tensor  structure in all cases 
leads to relation (5). 

Also, in out of equilibrium massless QCD, introduction of a small gluon 
mass does not help. In this case, processes like q~ -~ g are kinematically 
allowed, the spinor/ tensor  structure is modified, and ~ does not vanish in 
the x -~ 0 limit. 

In a few cases, none of the mentioned mechanisms works and one has to 
sum the Schwinger-Dyson series. This is the case of the r - p loop in the ~r 
self-energy. Even in the limit of zero pion mass, ~(x)  vanishes only as Ix[ 1/2 
and relation (5) is not fulfilled. A similar problem appears in electroweak 
interactions involving decays of Z and W bosons, decay of Higgs particles, 
etc. Another  important  case is massless g2~b3 theory. In contrast  to  massless 
QCD, massless g2¢3 theory contains no spin factor to provide a q2 factor 
necessary to obtain (5). 

The densities are restricted only mildly: they should be cut off at high 
energies, at least as [ko[ -3-~,  in order to obtain a finite total  particle density; 
for nonzero ko, they should be finite; for ko near zero, they should not diverge 
more rapidly than [ko[ -1,  the electron (positron) distribution should have a 
finite derivative. Further restrictions may come from Slavnov-Taylor identities 
[24-26], but  they are not crucial for our analysis. 
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The paper is organized as follows. 
In Sec. II we analyze the Schwinger-Dyson equation in the Keldysh repre- 

sentation, solve it formally, and identify pinchlike expressions. For one-loop 
self-energy insertions, we find that the Keldysh component (~)(q2)) of the self- 
energy is responsible for pinches. We further find that the nonzero Keldysh 
component requires loop particles to be on shell. 

In Sec. III we analyze functions such as I2, D, and IrngTR, and investigate 
their threshold properties. 

In Sec.IV we show that the electron and photon propagators, calculated 
in the single self-energy insertion approximation, are free from pinching. 

In Sec. V we analyze pinchlike expressions in the q - q, g - g, and ghost- 
ghost contributions to the gluon propagator, the quark propagator and the 
ghost propagator in the single self-energy insertion approximation. We find 
that, in all the cases, the spinor/tensor factor F contains a factor q2 that is 
sufficient to eliminate pinching. 

In Sec. VI we briefly discuss the elimination of pinching in the resummed 
Schwinger-Dyson equation. 

In Sec. VII we briefly recollect the main results of the paper. 

2 P r o p a g a t o r s  a n d  t h e  S c h w i n g e r - D y s o n  E q u a t i o n  

We start [27,28] by defining out of equilibrium thermal propagators for bosons, 
in the case when we can ignore the variations of slow variables in Wigner 
functions [12,29]: 

(Oil 022 0 1 2 )  D =  \D21 , (6) 

i 
Dll(k)  = D~2(k ) = k2 _ m2 + 2ie[ko[ + 27r sinh 2 06(k  2 - m2), (7) 

012(k) = -21r6(k 2 - m2)(cosh 200(ko) + sinh 2 O 0 ( - k o ) ) ,  (8) 

D21(k) = -2~r6(k 2 - m2)(cosh 200( -ko)  + sinh 200(ko)). (9) 

For particles with additional degrees of freedom, relations (6)-(9) are provided 
with extra factors (]~ + m) for spin 1/2, (gu,, - (1 - a ) k u k v / ( k  2 4- 2 ieko))  for 
vector particle, etc., and similarly for internal degrees of freedom. To keep the 
discussion as general as possible, we show these factors explicitly only when 
necessary. The propagator defined by relations (6)-(9) satisfies the important 
condition 

0 = Dlt + D12 + D21 + D22- (10) 

In the case of equilibrium, we have 

sinh 2 O(ko) = n B ( k o )  -- exp/3[ko[ - 1 i l l )  
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To obtain the corresponding relations for fermions, we only need to make the 
substitution 

sinh 20(ko) ~ - sin 20(ko). (12) 

In the case of equilibrium, for fermions we have 

1 
sin20f'P(kc') = nf'p(k°) = exP~([kol ~= ~u) + 1" (13) 

Out  of equilibrium, nB(ko) and nf(ko) will be some given functions of ko. 
To transform into the Keldysh form, one defines the matr ix  Q [28] as 

11) 
Now 

( ODA DNDR) __QDQ-1, (15) 

- i  
DR(k) -- - ( D l l  + D21) = k2 _ m2 + 2ieko' (16) 

- i  
DA(k) : - ( O l l  + O12) : k2 _ m2 _ 2ieko : -D~(k) : DR(-k), (17) 

ON(k) : Dl l  + 022 : 21r~(k 2 - m2)(1 + 2sinh 2 8). (18) 

We need DK expressed through DR and DA: 

DK : h(ko)(DR - DA), h(ko) : -e(ko)(1 + 2 sinh 2 0). (19) 

Again for fermions, DK is equal to 

DK(k) = D11 + D22 = 2~rS(k 2 - m2)(1 - 2 sin 2 0). (20) 

The proper self-energy 

satisfies the condition 

{' Z l l  Z12 
Z :  \E21  Z2~] (21) 

0 : Zll -- ZI2 -- ~21 Jr- ~22- (22) 

It is also transformed into the Keldysh form (in Niemi's paper there is a 
misprint using Q-I instead of Q): 

( ~Z~ ~OA ) = QZQ-I' (23) 

ER : - - ( E u  -- E21), (24) 

£A = -(£11 - £12), (25) 
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~9 = Eil  + ~Y22. (26) 

EA = ~'~. (27) 

The calculation of the ,U matrix gives (propagators S(k)  and G(k)  in the 
self-energy matrix and in the Schwinger-Dyson equation are also given by (6) 
to (19), with the spin indices suppressed to keep the discussion as general as 
possible): 

.1 [ 
ER = - q) 

+ (D.4(k) - D K ( k ) ) ( S R ( k  - q) - SK(k  - q))),  (28) 

.1  2 
SA = - ,  ~g f d4k (DA(k)SR(k  - q) 

' ' - DK,k)),SA,k - - + ,DR,k) " ' ' q) S K ( k - q ) ) )   2g) 

.1 2 f d4k 
f2 ((DR(k) 

+ DA(k ) ) (SA(k  - q) + SR(k - q)) + D K ( k ) S K ( k  -- q)). (30) 

A simple exercise with the help of (47) will convince us that only on-shell 
loop-particle momenta contribute to I2. The Schwinger-Dyson equation 

6 = G + iGEG, (31) 

can be written in the Keldysh form as 

0A 0K GA GK 

( 0 GREROa ) ( 3 2 )  
+ i GA~AOA GA~OR + GK~ROR + GAEAOK 

By expanding (32), we deduce the contribution from the single self-energy 
insertion to be of the form 

On ,.~ GR + iGR~RGR,  OA ..~ GA -4- iGAEAGA,  (33) 

which is evidently well defined, and the Keldysh component suspected for 
pinching: 

OK ~ GK + iGAI2GR + iGKz~RGR + iGA.~AGK. (34) 
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It is easy to obtain a solution [28] for ~a and ~A using the form (32). One 
observes that the equations for ~R and ~A are simple and the solution is 
straightforward: 

1 
g~ - a ~  1 - i ~ R  ~A. (35) 

To calculate gK, we can use the solution (35) for gR and GA: 

GK = ~A(G A1GKGR 1 + iJ?)gR. (36) 

Now we eliminate GK with the help of (19): 

G[< -= GA (h(qo)(GA'  - G ~ ' )  + iJ?) gR. (37) 

The first term in (37) is not always zero, but it does not contain pinching 
singularities! The second term in (37) is potentially ill-defined (or pinchlike). 
The pinchlike contribution appears only in this equation; thus it is the key 
for the whole problem of pinch singularities. In the one-loop approximation, 
it requires loop particles to be on mass shell. This will be sufficient to remove 
ill-defined expressions in all studied cases. 

We start with (34). After substituting (19) into (34), we obtain the regular 
term plus the pinchlike contribution: 

~K ~ ~Kr + ~ p ,  (38) 

~Kr = h(qo) (GR - GA + i G R E R G R  - i G A E A G A )  , (39) 

~I¢,p = iGA{2GR,  {2 = ~ - h(qo)(ER - ~ A ) .  (40) 

For equilibrium densities, we have ,U21 = e-Oq°Zx2 , and expression (40) 
vanishes identically. This is also true for fermions. 

Expression (40) is the only one suspected of pinch singularities at the 
single self-energy insertion level. The function ~ in (40) belongs to the type 
of functions characterized by the fact that both loop particles have to be on 
mass shell. It is analyzed in detail in Secs. III and IV (for threshold effect) 
and in Sec. V (for spin effect). With the help of this analysis we show that 
relation (40) transforms into 

.K (q2 ,m2 ,qo )  ( 1 1 ) ,  (41) 
~Kp = --~ 2 q2 _ m 2 + 2ieqo + q2 _ rn 2 _ 2ieqo 

where K ( q 2 , m 2 , q o )  is ~ / (q2  _ m 2) multiplied by spinor/tensor factors in- 
cluded in the definition of GR,A. The finiteness of the limit 

lira g ( q 2 , m 2 , q o )  = K~(qo)  < oo (42) 
q2 _+m 2 :FO 

is important for cancellation of pinches. The index zF indicates that the lim- 
iting value m 2 is approached from either below or above, and these two 
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values are generally different. To isolate the potentially divergent terms, 
we express the function K(q2,m2,qo) in terms of functions tha t  are sym- 
metric (K1 (q2, m 2, qo)) and antisymmetric (K2 (q2, m 2, qo)) around the value 
q2 _ m 2. 

K(q2, m2,qo) = (Kl(q2,rn2, qo) +e(q 2 - m2)K2(q2,rn2, qo)). (43) 

These functions are given by 

/(1,2 (q2, m 2, qo) : 1 (K(q2, m2 ' qo) -4- K(2m 2 - q2, m 2 ' qo)). (44) 

Locally (around the value q2 = m 2) this functions are related to the limits 
K:t:(qo) by 

1 
K1,2(q2,m2,qo) : ~(K+(qo) -4- K-(qo)) .  (45) 

As a consequence, the right-hand side of expression (41) behaves locally as 

i 
GKp(q 2, m2,qo) ~ -'~ (Kl(qo) + e(q 2 - m2)K2(qo) ) 

( 1 1 ) 
q2 _ rn 2 + 2ieqo + q2 _ m 2 _ 2ieqo ' (46) 

and the term proportional to K2 is capable of producing logarithmic singular- 
ity. Furthermore, we were unable to eliminate pinches related to the double, 
triple, etc., self-energy insertion contributions to the propagator. However, 
their sum ,U~ ° is free from pinching under the assumption tha t  the resumed 
Schwinger-Dyson series is also free from pinching. 

3 T h r e s h o l d  F a c t o r  

In this section we analyze the phase space of the loop integral with both 
loop particles on mass shell. Special care is devoted to the behavior of this 
integral near thresholds. In this analysis the densities are constrained only 
mildly: they are supposed to be finite and smooth, with a possible exception 
at zero energy. We also assume that  the total density of particles is finite. 
The expressions are written for all particles being bosons, and spins are not 
specified; change to fermions is elementary. 

To obtain the integrals over the products of DR,A and SR,A, we start  with 
a useful relation [35]: 

1 
dk°f(k)( '(k2 - m ~  + ie)((k ' -  q)2 _ rn~ + iAe) 

1 
( - - ( ( k - - - ) 
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= _(21r) 2 f d k o f ( k )  (6(ko - WD)J(ko -- qo + Aws)  
4WDWS 

+ 6(ko + WD)6(ko -- qo -- Aws)). (47) 

where f ( k ,  q) is some polynomial, WD = (k 2 + m ~ )  x/2, and w s  = =  ((k - 
vecq) 2 + rn~) 1/2. Similar relations could be obtained for higher powers of 
D n , a  and SR,A. For example, for the nth power of k 2 - rn2D + i)~koe, the real 
part  of the integral will be obtained by substituting 6(n)(k 2 - m ~ ) ( - 1 ) ( n )  
instead of 6(k 2 - rn~). Now we easily calculate R e E R  as 

_ _g2 f d 4 U p  ( e ( k o ) J ( k 2 _ ~ _ m 2 ) h D ( k o )  

J \ 
e(ko - qo)J((k - q)2 _ rn2s)hs(ko _ qo).'~ F. + 

] (48) 

F is the factor dependent on spin and internal degrees of freedom. 
As we assume that  the zero-temperature renormalization has already been 

performed, the zero-temperature part is in fact eliminated by counter terms 
and only the thermal part  remains: 

_ g2 f d 4 k . p  (6 (k  2 - m ~ ) s i n h ~ ( k o )  

6((k - q)2 -(__~ --- m-'~D)m}) sinh~(ko - q°) _) F. (49) + 

Now, starting from (24) to (26), we calculate J2 and Irn,Fm. 

z- 5--ig  [2 = 2 i l m ~ 1 1  f d4k 2 2 = - -  ~-~g47r  6(k - - - 

N ~ ( k o ,  ko - qo)F, (50) 

where 

N o ( k o ,  ko - qo) : l ( - e ( ko (ko  - qo)) + (1 + 2sinh 2 OD(ko)) 

(1 + 2sinh 20s(ko - qo))), (51) 

: g2 
f d4k 2 2 I m E R  - O ~ 4 ~ r  6(k - rn2D)d((k - q)2 _ m ~ ) N R ( k o ,  ko - qo)F, (52) Y *l  

and 

Y R ( k o ,  ko - qo) = (s inh20D(ko)e(ko - qo) + sinh 20s(ko - qo )e ( - ko )  

+ O ( - k o ) O ( k o  - qo) - O(ko)O(qo - ko) ). (53) 
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It  is useful to define ND(ko, ko - qo) as 

ND(ko, ko - qo) = N.o(ko, ko - qo) - h(qo)Nn(ko, ko - qo). (54) 

After integrating over 6's, one obtains expressions of the general form 

1 f lkoldko,~N,. ~. - Zo),  (55) Z =  ~ T"" ,,.o,..o-qo)F(qo, lql, ko, lkl,qk,...)O(1 2 

where Ikl : (k2 - m~o) l /2 ,  
qk  = Iqllklzo, (56) 

q2 + k 2 _ (q _ k)2 (57) 
Zo = 21kllql 

be(0, Ir) is the angle between kT and x axes. 
Let us start  with the q2 > 0 case. Solution of O ( 1 - z  2) gives the integration 

limits 

ko 1,2 = ~q21 (qo(q2 + m ~ _ m ~ )  ~:lqlCCq2 _q~_tr)Cq2 _q2_tr))t/2) , (58) 

o r  

Ikl,,2 : ~x ([ql(q 2 +rn~_rn2s) Tqo((qZq~_tr)(q2_q~tr))l/2) , (59)  

q-l-it =---ImP ~ real. (60) 

Assume now that  qt~ ~ O. In this case, at the threshold, the limits shrink to 
the value 

2 2 _ m ~ )  Iql(q~ + m ~  - m ~ )  qo(qtr + mD (61) 
ko tr = 2q~r , Ikl,~ = 2q~ 

Near the threshold, it is convenient to change the integration variable by 
dko]ko[/]k] : d[veck]. Now, for ]q2 _ q~rl small enough, we have 

ko : e(ko,tr(lk[ 2 + m~D) 1/2 

We define the coefficient cl by 

1/ 
Cl = ~ d~N(ko tr, ko tr - qo)F(qo, Iql, ko tr, Ikhr, qktr,  ...). (62) 

Now the expression (55) can be approximated by 

z ~ ~ l ( I k l ~  - I k l l )  

~, ~,(oCq ~ - q~_~) + O(-q ~ + q~_~)) q°((q~ 
q~-tr ) ( q 2 q2tr))i/2 

q2 . (63) 
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Relation (63) is the key to further discussion of the threshold effect. 

We obtain this also for higher dimension (D=6, for example). 

Relation (63) put some limits on the behavior of density functions: they 
should not tend to infinity at any value of qo ~ 0; near qo = 0, owing to the 
presence of the factor qo, they should not rise more rapidly than %1. 

Owing to (60) and (63), the function :Z(q 2, m~ ,  m~) has the following 
properties important  for cancellation of pinches. 

It vanishes between the thresholds, i.e., the domain (roD -- m s )  2 < q2 < 
(rnD+ms) 2 is forbidden (Z = 0). If it happens, that  the bare mass m 2 belongs 
to this domain, the single self-energy insertion will be free of pinching. In this 
case also multiple (double, triple, etc.) self-energy insertions will be free of 
pinching. 

It  is (in principle) different from zero in the allowed domain q2 < (rod - 
ms )  2 and (rnD + ms )  2 < q2. In this case one cannot get rid of pinching. 
An exception to this rule are occasional zeros owing to the specific form of 
densities. 

The behavior at the boundaries (i.e., in the allowed region near the thresh- 
old) depends on the masses mD and m s  and there are a few possibilities. 

If both masses are nonzero and different (0 ~ mD ~ m s  ~ 0), then there 
are two thresholds and I behaves as (q2 _ q2tr)l/2 in the allowed region near 
the threshold q~:tr. For m2m : q2, the power 1/2 is not large enough to 
suppress pinching. 

If one of the masses is zero (rod ~ O, m s  : 0 or m D :  O, m s  ~ 0), 
then (63) gives that  the thresholds are identical (i.e., the forbidden domain 
shrinks to zero) and one obtains the (q2 _ m~) l  behavior near m~.  This case 
(for m s -- rn~) is promising. Elimination of pinching in electron propagator,  
considered in Sec.IV, is one of important examples. 

If the masses are equal but different from zero (roD = m s  ¢ 0), then 
there are two thresholds with different behavior. The function Z behaves as 
(q2 _ q~t~)l/2 in the allowed region near the threshold q~-tr = 4m~,and  this 
behavior cannot eliminate pinching in the supposed case m 2 -- 4rn~ . 

However, at the other threshold, namely at q2_t~ -- 0, the physical region 
is determined by q2 < 0 and the above discussion does not apply. In fact, 
the integration limits (58) or (59) are valid, but the region between ko 1 
and ko 2 is now excluded from integration. One has to integrate over the 
domain ( -c~ ,ko  1)U(ko 2,+c~). This leads to the limitation in the high- 
energy behavior of the density functions. Important  example of such behavior, 
elimination of pinching in photon propagator (mr),  is discussed in Sec.IV. 

If both masses vanish (rod --- m s  --- 0), the thresholds coincide, there is 
no forbidden region and no threshold behavior. The behavior depends on the 
spin of the particles involved. For scalars, the leading term in the expansion 
of Z does not vanish. Pinching is not eliminated. 
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The case of vanishing masses ( m o  = m s  = 0) for particles with spin ex- 
hibits a peculiar behavior. In all studied examples (see the Sec.V for details), 
77 behaves as qZ as q2 ~ 0, which promises elimination of pinching. 

4 P i n c h  S i n g u l a r i t i e s  i n  Q E D  

4.1 P inch  Singularities in the Electron Propagator 

In this subsection we apply the results of preceding section to cancel the 
pinching singularity appearing in a single self-energy insertion approximation 
to the electron propagator. To do so, we have to substi tute m D =  m,  m s  = O, 
sinh 20D(ko)  "-~ -ne(ko) ,  sinh2 Os(ko - qo) ~ n.~(ko - q o ) ,  and h(ko) 
- e (  ko ) ( 1 -  2ne ( ko ) ) , where ne and n~ are given non-equilibrium distributions 
of electrons and photons in relations (51), (53),(54), and (19). The thresholds 
are now identical 

q2, tr = ra 2, (64) 

and the integration limits are 

I (qo(q2 + m2 ) ~: lql((q2 _ m2)) (65) ko 1,2 : ~q2 

or  
= qo(q2 

Ik l~ - Ik l~  q2,  - m 2 ) )  • 

At threshold the limits shrink to the value 

(66) 

leo t~ = qo, Iklt~ : Iql. (67) 

Then, with the help of (62), we define 

(~ + m ) # ( ~  + m) 
y ( q 2 ,  mL qo) = 

(q~ - m ~) 

1 f d C N o ( k o  tr = qo, ko tr - qo = O) 
16"21ql(q2 - m 2) 

+ m)~(qo ,  Iql, ko ,~, Ikl~, q k ~ ,  ...) 

(~ + m)(Ikl2 - Ikll). (68) 

The trace factor ~r is calculated with loop particles on mass shell: 

(k - q ) . ( k  - q)~ 

(~ - 4 ) ( - k ~ ) q  2 
= - 2 ~  + 4 m -  (1 - " ) ( - k  + m - ( k - q ~ ~ - q o ) U "  (69) 
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In calculating the term proportional to (1 - a), we have to use the trick 

((k - q)2 ± ie)-2 _- lira ((k - q)2 ± ie) . (70) 

For q2 ~ 0, we can decompose the vector k as 

2 + m 2 + q2 ko 
qo - - m . f  4- 4 + kT, (71)  k = (k.q)q2 tl- + ~ + kT = (q -- "~q) 2q 2 Iql 

where, in the heat-bath frame with the z axis oriented along the vector 
q, we have 

q=(qo,O,O, Iql), ~=(Iql,O,O, qo), q ~ = 0 ,  ~ 2 = _ q 2 ,  (72) 

The transverse component of k, kT vanishes after integration over ¢. 
Finally, we obtain 

(~ + m)~/ '~ + m) = 2m(q 2 + rn 2 + 2m/~) 

+(q2 _ m 2) ( q2 q2- m ~ qo(q2q21q[+ m 2) 
-$ + ( + 2 iql)/~ + 2]~ T 

- ( 1  - a)  (q2 _ m 2) qo 
+ (73) 

Iql / 

Now we can s tudy the limit 

I~(qo)= lim If(q2,rn2, qo) 
q2 -.~ rn 2 

= ( ~ + m )  qo N 'k  2~[q[m 2 nt  o t,.,ko t,- - qo). (74) 

It  is easy to find that  tf(qo) is finite provided tha t  m 2 # 0 and Nf~ (qo, O) < (x). 
The last condition is easy to investigate using the limiting procedure: 

ND(qo,O)= lim Nl}(ko, k o - q o  ) 
ka--'~qo 

= lim 2n~(ko - qo)(ne(qo) - ne(ko)) 
ko"-~qo 

+ lim ((n¢(qo) - ne(ko) - (e(qo)e(ko - qo) 
ko-~qo 

(n Cqo) + - 2n,Cqo),  Cko))). (75) 

One should observe here tha t  the integration limits imply tha t  the limit 
ko ~ qo is taken from below for q2 > m 2, and from above for q2 < m 2. The  
two limits lead to different values of No(qo,O). Only the first te rm in (75) 

can give rise to problems. We rewrite it as limko-~0 (2kon.y(ko) on~(ko+qo)) 0ko 
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As relation (74) should be valid at any qo, we can integrate over qo to find 
tha t  the photon distribution should not grow more rapidly than  Iko[ -1 as 
ko approaches zero, while the derivative of the electron distribution r~e(qo) 
should be finite at any qo: 

lim kon.f(ko) < oo, (76) 
bo-~0 

lan'(q°)l < (77) aqo 
Under the very reasonable conditions (76) and (77) the electron propagator 
is free from pinches. 

It is interesting to  observe the discontinuity o f / ~ ( q 2  m2, qo) at  the point 
q2 = rn2. This feature will be repeated in massless QCD. 

It is worth observing that  I~(qo) is gauge independent, at least within the 
class of covariant gauges. 

4 . 2  P i n c h  S i n g u l a r i t i e s  i n  t h e  P h o t o n  P r o p a g a t o r  

To consider the pinching singularity appearing in a single self-energy insertion 
approximation to the photon propagator,  we have to make the substi tutions 
r ap  = ra = mS, sinh 20D(ko)  --4 -ne (ko ) ,  sinh 20s (k o  - qo) --~ - n e ( k o  - qo), 
and h(ko) = -¢(ko)(1 + 2n~(ko)). There are two thresholds, but  only ql,~r2 = 
0 and the domain where q2 < 0 are relevant to a massless photon. The  
integration limits are given by the same expression (65), but  now we have 
to  integrate over the domain ( -oo ,  ko 1)U(ko 2, +o0). As q2 _+ - 0 ,  we find 
(ko 1 --~ - o o )  and (ko 2 --+ +c~). The integration domain is still infinite but  is 
shifted toward :t=~ where one expects tha t  the particle distribution vanishes: 

: o) = \ g . .  - (1 - . )  = g q :  ] - 

- 16~21qlq 2 + Ikl 02 

q~q# / d ~ N D ( k o , k o - q o )  (g.p- (I-a)q 2 ---~zqoe] 
/ q~,qu ~ . 

F#~' (qo, [q], ko, I kl, qk , . . . )  _~Y~v - (1 - a) q2 "~ ~qoe]  (78) 

To calculate F ~V for the e - ~ loop, we parametrize the loop momentum k 
by introducing an intermediary variable l perpendicular to q. m is the mass 
of loop particles: 

k = ~q + l, q.l = O, k 2 = (k - q)2 -- m2, 

12 = Tr~ 2 _ ot2q 2, 

: k 2 + q2 _ (k - q ) 2  (79) 
2q 2 
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At the end of the calculation we eliminate I in favor of k. After all possible 
singular denominators are canceled, one can set ~ = 1/2. 

Fe~ = - T r ( ~  + m)7"(~  - ~ + rn)7 ~ 

= (2q2gU v - 2q~q v + 8lUP ") 

: ( ~ A U ~ ( q )  

q2 
+ - ~  ( ( 4ko( ko - qo) - 4m 2 - q2)AU~" (q) 

+ (-8(ko --~.q°~2 + 2q2)BUV(q)) I . (80) 

Using relation (156) we obtain 

' (s;: s,:)'"os K , v ( q 2 , q o ) -  167r21qlq2 + ~ dcJNo(k° ' k ° -qo )  

( 4m2q2o 

+ ~ ((4ko(ko - qo) - 4m 2 - qi)A~v(q) 
% 

- 2" + 2q2)B"~'(q) " (81) 

In the integration over ko the terms proportional to (k2oq2) n dominate and 
lime 0 IK., .(q2,qo)l < oo if 

16rr2iqiq 21 (S~: L;) kodk°" + W (  ~ + •k2oq 2) • 

S dckNf~(ko, ko qo) < oo. (82) 

Here N~(ko, ko - qo) is given by 

Nt)(ko, ko - qo) = -2ne(ko - qo)(-n-c(qo) - ne(ko) ) 

-n.,Cqo) - n,(ko) 
-e(qo)~(ko - qo)(-n.r(qo) 
+n,(ko) + 2n.y(qo)n,(ko)). (83) 

Assuming tha t  the distributions obey the inverse-power law at large energies 
n~(ko) ¢x Ikol -'L and n~(ko) (x Ikol-6% we find that  the terms linear in 
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densities dominate. Thus, for n = 0, 1, one finds 

+ ~ lk , , I  - (--q) 
a 2 

o¢ (6 - 1 - 2n) -~ (Iqlm)~+2"-6(-q~) (6-3)12. (84) 

It follows tha t  (82) is finite (in fact, it vanishes) if 6e, 6~ > 3. This is exactly 
the condition / dSkne,~(ko) < co. (85) 

Thus the pinching singularity is canceled in the photon propagator under the 
condition tha t  the electron and positron distributions should be such tha t  
the total  number of particles is finite. 

A'_so, in the photon propagator, the quantity "_imq2_~0 K~,~,(q 2, qo) does not 
depend on the gauge parameter. 

Expression (84) is not valid for m = 0. 

5 P i n c h  S i n g u l a r i t i e s  i n  M a s s l e s s  Q C D  

In this section we consider the case of massless QCD. Pinching singulari- 
ties, related to massive quarks, are eliminated by the methods used in the 
preceding section. 

In self-energy insertions related to gluon, quark, and ghost propagators, 
the masses in the loop as well as the masses of the propagated particles 
are zero. Thus, the methods of the preceding section do not produce the 
expected result. Attention is turned to the spin degrees of freedom, i.e., to 
the function F of the integrand in (50) to (55). In the calculation of F it 
has been anticipated that  the loop particles have to be on mass shell. In this 
case, F provides an extra q2 factor in all the cases considered, in which not 
all particles are scalars. This q2 factor suffices for the elimination of pinching 
singularities. 

The integration limits are now 

1 
ko 1,2 = ~ (qo • laD- (86) 

The difference [k[2 - [k h is finite and there is no threshold effect. 
It is worth observing that  for q2 > 0, we have to integrate between kol and 

ko2, whereas for q2 < 0, the integration domain is (-oo, ko 1)U(ko 2, +co). 
This leads to two limits, limq2_,±0 K(q 2, qo) = K± (qo), in all cases of massless 
QCD. 

By inspection of the final results (89),(90), and (91), we find tha t  the case 
q2 < 0 requires integrability of the function k2oND(ko, ko -qo) leading to the 
condition (85) on the quark, gluon, and ghost distribution functions. 

By using (79), we again introduce the intermediary variable l perpendic- 
ular to q; now we have to set m : 0. 
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5.1 Self-Energy Insertions Contributing to the Gluon Propagator 

The function K#v(q 2, qo) related to the gluon propagator is the sum 

K.u(q 2, qo) = ~-'iKq, qlmassive,#u(q 2, qo) 

+'F'iKq, q, masstess,u~(q 2, qo) + K~h~h,.~(q2,qo) + Kgg,.~(q 2, qo), (87) 

where the terms in the sum are defined as 

D ~P~ K.~,(q2,qo)= ( g . p - ( 1 - a )  a.p(q))--~-d-(g~v-- (1--a)mA,.~,(q)). (88) 

Pinching singularities, related to massive quarks, are eliminated by the meth- 
ods used in the preceding section. The tensor F related to the massless quark- 
antiquark contribution to the gluon self-energy is 

fq~[ - t~abTr]~qlJ(]~--~)7 v 
6 

= ~ ( 2 q 2 g  u~ -- 2q"q ~ + 81~l ~) 

t~ab ( (4ko(ko - qo) - q2)A"~(q) 

+ ( - 8 ( k o -  ~ )2  + 2q2)B.V(q)) + OttV(kT)]. (89) 

As F.~ contains only A and B projectors, relation (156) guarantees that the 
result does not depend on the gauge parameter. 

Relation (89) contains only terms proportional to q2, and 

lim Kg,.(q 2, qo) 
qa -',0 

is finite. 
For the ghost-ghost contribution to the gluon self-energy, the tensor F is 

given by 

F~g h = -5abNck" ( k - q)V 
l"q~" ) 

= --6abNc qq--~ ( 4k° (-k° - q° + q2 A "~ ( q) 

- ( k o -  ~)2B"V(q) - ~D"l'(q) + O"V(kT)). (90) 

The antisymmetric part vanishes after integration, so we have left it out from 
the final result in (90). 
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The tensor F for the gluon-gluon contribution to the gluon self-energy is 

5.bNc Fg~[ _ ~ (g.a (q + k)r _ g¢" (2k - q)" + g ~ ( k  - 2q) a) 

g¢.' - (1 - a~ (k - q). (k - q)., 
"(k - q)2 =l: 2i(ko - qo)e) 

(gU" (q + k)*" _ g ¢%' (2k - q) u + f " U ( k -  2q)")  

(g_, - (1-  
k 2 -4- 2ikoe ] 

9 _ JabNc2 4q2gu" - ~q~,qv + lOlul,, - (1  - a)(-5q~q,, + 3q2gg~,) 

q2 q4 
1 - a ( - -~q~q~ + 5q2l~l~ + q2(l~,q~ + l~q~,)+ -~g~v) 

1-a ( q' q4 ) 
(k - q)2 ~k-2i-(ko - qo)e -'-fq~q~" + 5q21~'l" - q2(l~'q~' + q~l,,) + --fg~,~, 

+(1 - a) ~ ( -  2q~q~, 

. ( l - a )  2 ( l - a )  2 
+(k2"~2/-~oe) (k - q)2 :k 2i(ko - qo)e )2q2(q~'lv + l~,q,,) 

(1 - a) u 4q41~lf~) 
4 (k 2 ± 2ikoe)((k - q)2 -4- 2i(ko - qo)e) 

5abNcq2(1 ( qo)2 3 - - ~ ~  ~'~ ( l O ( k o - - ~ .  + q2)A~W(q) 

qo~2 q2 ) 
+(-lO(ko -- 2" + 4q2)B~'V(q) - "~ D~u(q) 

- (1  - a) ( ~ A ~ v -  B~'  - q---° C~"~lql ) 

+ ( 1 - a ) ' r - q 2  A'~'k, q2 "4-2qq-~°~ B'=' -2~'~] C't~" - 2O'V) 

+O"V(kT)) .  (91) 

Expressions (89), (90), and (91) have been obtained by substitution of (152), 
(154), and (155) and, finally, by eliminating the variable I in favor of k. The 
tensor O~U(kT) is linear in k, thus it vanishes after integration over ¢. 

We note here that, in the Feynman gauge (a = 1), the operator C is 
absent from the gluon self-energy! Consequently, the relation originating from 
Slavnov-Taylor identities (proved in [24-26] for equilibrium densities), H~ = 
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(q2--IIL)IID, is fulfilled at a = 0 only ifIID = 0. Thus the contributions to 7rD 
from the ghost-ghost and gluon-gluon self-energies mutually cancel, imposing 
restrictions on the densities related to unphysical degrees of freedom. As it 
does not interfere with the cancellation of pinches, the problem of unphysical 
degrees of freedom will be discussed elsewhere. 

Finally, we need (156) in all three cases. 
Expressions (89), (90), and (91) for the ghost-ghost, quark-antiquark, and 

gluon-gluon contributions to the gluon self-energy contain only terms propor- 
tional to q2. The function Ku~ (q2, qo) approaches the finite value Ku,, (-4-, qo). 

Thus we have shown that the single self-energy contribution to the gluon 
propagator is free from pinching under the condition (85) . 

5.2 Quark-Gluon Self-Energy Contribution 
to the Quark Propagator 

The K spinor for the quark-gluon contribution to the massless quark propa- 
gator is defined as 

/~(q2, qo) : ~ .  (92) 

In the self-energy of a massless quark coupled to a gluon the spin factor F is 
given by 

~q~ = ~ab N 2 - 1  ( ( l - - a )  (k-q)~(k-q__)~ 

Y2 - 1 ( - 2 ~  - (1 - a ) ( -$  - (fi _ ~)(q2 _ k 2) 
 1,o - ( k  - q ) 2  + 2i(ko - qo) / 

--4 ~ a b ~  ~ - ~  -- 2 ~ - ~  -- -- - - ~  (--~ -- ~T~) .(93) 

For our further discussion, we need the product 

- 1_2 qo ko 
~J~qg~ = ab ~ r . l  , - ~  + 2[-'~1/~ + 27 T 

1 --2 a qo I (--4 + ~ - ~ ) ,  , (94) 

which contains the damping factor q2. The t e rm ~T will be integrated out. 
By inserting (94) into (92), we obtain (42) free from pinches. 
To calculate/~(qo), we need the limit 

N ~ - 1 2 ( k  -qo )$ ,  
lim q2 - ~,b ~-/~ o._ (95) q2 --~0 qo 

From (95) we conclude that If(qo) does not depend on the gauge parameter. 
Omitting details, we observe that pinching is absent from the quark prop- 

agator, also in the Coulomb gauge. 
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5.3 G h o s t - G l u o n  Se l f -Ene rgy  Contr ibut ion  
to  the  G h o s t  Propagator  

The K factor is defined as 

D K(q 2, qo) = ~ -  (96) 

The F factor for the ghost-gluon contribution to the ghost self-energy is 

Fg,,~ = 6obNoV'q v (g,,~ - (1 -- . )  .(_k~ : q . ) ( k v - _ q d  
(k - q)2 ± 2i(ko - qo)e ] 

¢~abNc ~ .  (97) 

The factor q2 ensures the absence of pinch singularity and a well-defined 
perturbative result. 

5.4 Scalar - P h o t o n  Sel f -Energy Contr ibut ion  
to  the  Scalar Propagator  

Although the massless scalar boson interacting with a photon is not part  of 
massless QCD , it is treated using the same methods. 

The K factor is defined as 

K(q 2, qo) = q~2" (98) 

The F factor for the massless scalar-photon contribution to the scalar self- 
energy, 

(k - q)t,(k - q)a, 
F.~ = (q + k)" (q + k) ~ g.~ - (1 - a) (k = q~ "~ 2"i~(~ = qo)i]  

q2 _ k 2 
= q" (2 - ( 1 -  a) (k _ q ) ~  ~i-~  _ qo)e ) 

--+ 2q 2, (99) 

clearly exhibits the q2 damping factor! 

6 Pinch Singularities in Schwinger-Dyson Series 

For the resummed Schwinger-Dyson series, instead of the zero-temperature 
renormalized mass m a  used in preceding section, we have to use the thermal 
mass defined through the solution qo([qD of equation (100) for fixed [q[: 

q2 _ m~ - ne,F,R(qo, [q[) = 0, m~([q[ )  = qo2(lq[) - q2. (100) 
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This mass is now compared with the thresholds of the functions/2 and I m E R  
and one obtains a classification of possible situations appearing in the re- 
summed Schwinger-Dyson series. 

With increasing thermal mass, the same loop particles will appear in 
different cases, contrary to the case of single self-energy insert ion.  

Now, with the help of (101), one defines Zm, the factor correction to the 
renormalization constant due to the presence of mat ter  out of equilibrium. 

q2 _ rn2G _ ReSR(qo,  Iql) = ZTnX(qo, Iql)(q 2 - m~(Iql)). (101) 

However, the full renormaiization programme, although parallel to the equi- 
librium one, deserves a more detailed analysis and remains outside of the 
scope of this paper. 

In the case of particles with spin, (35) will include projection operators 
and (100) will be modified accordingly. This will not change arguments of 
this section! 

6.1 Sehwinger-Dyson Series for Scalars 

We start  with a scalar (pseudo-scalar) propagated particle. Owing to the 
analysis in Sec. III threshold effect determines the Keldysh component (37) 
in the form 

~r = 0 q~tr < q2 < q~tr 

= i 1 Y2 1 q2 < q2_t r or q2 > q~tr" (102) 
GA 1 - i Z A  GR x - i z ~ n '  

The threshold for I m 2 n  depends on the masses of involved propagators. 
While GA.R is the resummed propagator and its mass is shifted to mg(Iql),  
mD and m s  are zero-temperature renormalized. Now we have three possible 
cases, each of them free from pinches. 

I) If the thermal mass belongs to the kinematically forbidden region, 

Ires  - mDI  < ma(Iql) < m o  + m s ,  (103) 

there are no pinches. 
II) If the thermal mass belongs to the kinematicaily allowed region, 

ma (lad > m D  + ms ,  (104) 

o r  

mg([q[) < tms  - m D [ ,  (105) 

the first term in (37) vanishes again, and the two poles are separated by finite 
2]Ira,U a[ and there are no pinches. 
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The  function 
~2 

Ka/I,, ,E,,  = Im2,R (106) 

is non-singular and poles can be separated by 

~ = K~/1,n~:a (q~ _ 1 _ 1 (107) 
2 ,UR + 2iqoe q2 _ ~ _ 2iqoe)" 

In this case, in order to remove pinching, we have had to assume tha t  the f2 
and Irn•R are different from zero whenever it is kinematically allowed. As 
our densities are almost  completely arbitrary,  and I rnER is not a posit ive 
definite quantity, we cannot exclude the case tha t  a t  some q2, I m E R  has 
occasional zero which is not zero of /2. If  it happens tha t  this is jus t  the 
point  where q2 _ rng([q[) we shall have a new sort of pinch. Such a si tuation,  
which we could not prove to be excluded, should be t rea ted  separately,  with, 
possibly, no bet ter  way out than  performing the the calculation of two-loop 
contributions)! 

III)  As the thermal  mass varies with (input) particle densities, and  with 
momen tum,  it is necessary to t rea t  also the boundary  cases i.e. when one of 
thresholds coincides with the mass shell. Specially, as the energy of the  prop-  
agated  particle rises, it should be expected tha t  the thermal  mass  converges 
to  its zero- tempera ture  limit. The solution is found in the threshold effect 
and in the spin effect. 

Among the boundary  cases there is one which exhibits a behaviour  typical  
of  the allowed region ( m s  = mD = 0, mg([qD = o, all particles are scalars). 
There  is no threshold and no threshold behaviour.  Consequently, for scalar 
particles the poles will be separated for both  0 < q2 and q2 < 0, and there  is 
no special behaviour  as q2 __+ 0. 

Case of massless loop particles with spin coupled to massless scalar (ex- 
amples: ghost -~ ghost + gluon, scalar -~ scalar + photon) is described by 
the same expression (107), but  now there is a special point q2 = 0 where 
12 and I m ~ R  vanish. At [q[, for which mg([qD ~ o, the K~/ImER is well 
defined even at  q2 = 0 and one can still use (107). 

However we have to analyze the possibility tha t  for some [q[, m ~  + 
R e E R  -+ 0 as (q2)n. For n < 1, the expression is integrable, n = 1 we 
obtain  the case t rea ted  below in (108). If  there is a case such tha t  n > 1, a 
problem will arise! 

Case (roD ~ 0, mS = 0), thresholds are identical (q2_tr = q2tr = rn2D) 
and the effect is linear in (q~ - q~r). The behaviour near  the threshold is 
obta ined by an expansion around singular point and retaining first non-zero 
contributions: 

-4qoh(qo)e - i C a x  
~K ~ (Zml x _ iClm~R x + 2iqoe)(Zml x + iCtmER x _ 2iqoe)' (108) 

where 
x - -  q2 _ m ~ ( l q [ )  - q2 _ m~r,  ( 1 0 9 )  
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and 
/) = C~x + O(x2), 

I m Z n  = C1m~:~x + O(x2). 

For small x, one obtains 

GK ~, -2Z ,  nh(qo)~r~(qo)5(x) 
iC~ [ 1 

2(Z~ 2 + C/2m.Ea) X + 2iqo~ 

- 2 z . ~ c ~ . ~  ~(qo)6(x)] .  

- - +  

(110) 

(111) 

x - 2iqoe 

(112) 

The result is well defined whenever Z~ 1 ~ 0. 
Case (ms ~ mD ~ O, m~(Iql) = (mD :t= ms)  2) and (ms = mD ~ O, 

m~OqD = 4m~)), the threshold effect is proportional to the square root of 
(q2 _ q~r) at the corresponding threshold. The behaviour near the threshold 
is determined by 

(113) 
f K  ~ - i  ( z ~ x  _ i~R[x[1/2 + 2ieqo)(Z~l  x + i~Rlxl l /2  _ 2ieqo) ' 

n = Ixll/=(Cn + ocx)), (114) 

Im2Yn = Ixl*/=(O~=E. + o(~)). (115) 

In this case, the Ixl 1/2 dominates over x for Ix] small, the resulting Ix] - t /2  is 
integrable.The small Ixl behaviour is 

~ ~ - i  ~,~ l~l~/~ (116) 

The elimination of pinches is non-perturbative as we cannot put Clm~,n equal 
to zero in (116). 

In the next two subsections we analyze the resummed Schwinger-Dyson 
series for the vector particle and for spinors. The discussion is to a large 
extent parallel to that given above, so we do not repeat it. 

6.2 Schwinger-Dyson Series for Vector Bosons 

The gluon self-energy is the sum of quark-antiquark, ghost-ghost and gluon- 
gluon contributions. These contributions are evaluated with the help of (89), 
(90) and (91). After inserting the gluon self-energy into (50) and (52) for 
imaginary parts and calculating the real part with the help of (49), one can 
proceed by projecting the contributions into the invariant tensor subspaces. 
We shall not write it explicitly because, for our purpose, it is enough to have 
an overall q2 factor in/'2 and I m ~ n .  
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The self-energy equals 

Il(q) = liT R(q)Am,(q ) + IlL a(q)Ba ~.,(q) 
+lid R(q)DR ~w(q) + TIc R(q)CR ~,v(q). (117) 

In the presence of the tensor CR v~ the inversion of the Schwinger-Dyson 
equation requires [26] construction of two operators T~u as 

T+.v(q) -- aR(q)BR .v(q) + (1 -- a~(q))DR .~,(q) 

~,v(q)SR ~.,(q)], (118) +CR 

T~,v(q ) --- (1 - a R ( q ) ) B a  ~v(q) + aR(q)na ~,v(q) 

(a~(q) -aRCq) ) l/2 ( 
- aBR uv(q)CR .v(q) 

a 

.~,(q)BR m,(q)), (119) +CR 

T ~  = T~A , T+,AT~,A = T~,AT+,A ----0. (120) 

Here aR (q) is the solution of the equation 

IIC Ra 1/2 
aIID R-- IIL R 

W i t h / / ~  defined as 

_ (~ l (q )  - ~ R ( q ) ) ' 1 2  

1 - 2aR(q) 

+ 1 Il~ (q) = ~ ( . I i .  R + I l L  R "4- ( a I l D  R -- I l L  R)(1 + 2aR(q))  ), 
1 -- 2aR(q) 

one obtains 

GR u~'(q) = (A~v(q) + BR t.'(q) + aDa .v(q)) 

iAm, (q) + iT+ .~, (q) + 
q2 _ n T ( q )  + 2 i q :  q2 _ n ~ ( q )  + 2 i q :  

Similarly, one obtains the Keldysh component 

iA.p(q) 
~K gv(q) = -q2 _ Il~(q) _ 2iqoe 

(121) 

(122) 

iT~,,~(q) 
q2 _ li~ (q) + 2iqoe .(123) 
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• + ,  ,,pCq) 
q2 _ I I  +. (q) _ 2iqoe 

iTR*~o(q) ) 

- q2 _ ~ ~ 2iqoe 

• (A '" (q)+B*RPr(q)  +aD*R#~(q)) 

• ( - 4 q o h ( q o ) e g , - i J 2 ~  ( A  ~ ( q ) + B ~  ¢ (q)+aD~n ~ ( q ) ) )  

i 

• 
( q )  

- ~ ' ~  2iqoe 

-t iT+ av(q) 
q2 _ I I~  (q) + 2iqoe 

iT~  ~v(q) 
+ a s - I I~  (q) + 2iqoe ] 

(124) 

6.3 

The self-energy contribution can be written as 

~(q) = Ua~ + ~ a  + Wa, 

,UR(q) = VP0~ + ~R + WR, 

Schwinger-Dyson Series for Spin 1 /2  Particles 

(125) 

(126) 
where U, L u and W are functions of q, and L~ satisfies Lq = o. For isotropic 
densities L u is a linear combination of qu and Uu. By multiplication we find 
i ,~RGR to have a similar form 

i•R(q)GR = (tR + un~ + V l ~ R  + wR~n~) / (q  2 -- rn2G + 2iqoe). (127) 

With the help of the projection operators 

P2' R = P+n, P+RP-R = P-RP+a  = 0 

we find 

2 2 2 r 2  2 x i / 2  ~R(q) = (u2nq ~ + v a L R -  WR~Rq ) , 
a±R = (tR 4- ~?R)/(q 2 - m2G + 2iqoe), 

(128) 

(129) 

i,UR(q)GR = a+RP+R + a - R P - R ,  (130) 
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Finally, 

GR _ .  P+R + P-R (131) 
= Zq2 _ m ~  + 2iqoe" 

~R = -i(~ + m) ( 1 
q2 _ rn~ - E+R + 2iqo e'P+R 

1 P - n )  , 
+ q2 _ m ~  - 2Y-R + 2iqoe 

~Y+R = (tR + ~R), (132) 

1 p ,  1 ) 
GK = q2 _ m ~  - 2 ~ R  -- 2iqoe +R + q2 _ m 2 _ 27,__ R _ 2iqoeP*-R 

(-4qoh(qo)e(]l + rn) - i(~ + rn)[2(~ + m))  

1 
q2 _ m ~  - 2Y+R + 2iqoe P+R 

1 P - R ) .  (133) 
+ q2 _ rn~ - 2Y_R + 2iqoe 

Complex conjugation does not affect ~/matrices. 
In this case we have two modes with physical masses (which can be dif- 

ferent) defined by 

q2 _ m ~  - Re~+a(qo,  Iql) = 0, m~:o(Iql) = q2%([ql) - q2. (134) 

Analogously, one defines Z+m (for each mode separately!) 

q2 rn~ Re~y±R(qo, lqD -1 - - = Z ~ : . ~ ( q o ,  [ql)(q 2 - m~:o(lq[)). (135) 

To eliminate pinch singularities, our general discussion applies also to fermions. 
In the product of terms with the same physical mass, the cases when it be- 
longs to either the forbidden or the allowed region are evidently free from 
pinches. 

For a massive fermion coupled to a massless boson (electron+photon, 
massive quark+gluon) at the threshold (for the impulses at which the ther- 
mal mass is equal to the bare mass), all the imaginary parts in ~ and 
I m E R ( U ~ ,  V~, W ~ ,  I m  t, I m  u, I m  w) vanish linearly with q2 _ m~ owing 
to the threshold effect. The "e" term in (133) is well defined, and properties 
of ~2 (with the natural assumption that Z~ 1 # 0) guarantee that expression 
(133) remains well-defined also at the boundary. 

A similar case is with massless fermion coupled to a massless boson (mass- 
less quark + gluon) in the limiting case where also the physical mass tends 
to zero (mg = m = 0). We have that W~,R = o and thus u = v = 0. From 
(133) we find that  it is enough if ~ / /van i shes  linearly with q2 __~ 0, and this 
is guaranteed by relation (94). 



230 Ivan Dadid 

7 Conclusion 

Studying the out of equilibrium Schwinger-Dyson equation, we have found 
that ill-defined pinchlike expressions appear exclusively in the Keldysh com- 
ponent (G~) of the resumed propagator (37), or in the single self-energy 
insertion approximation to it (40). This component does not vanish only in 
the expressions with the Keldysh component (26) (~  or ~ for the single 
self-energy approximation) of the self-energy matrix. This then requires that 
loop particles be on mass shell. This is the crucial point to eliminate pinch 
singularities. 

We have identified two basic mechanisms for the elimination of pinching: 
the threshold and the spin effects. 

For a massive electron and a massless photon (or quark and gluon) it is 
the threshold effect in the phase space integration that produces, respectively, 
the critical q2 _ rn 2 or q2 damping factors. 

In the case of a massless quark, ghost, and gluon, this mechanism falls, but 
the spinor/tensor structure of the self-energy provides an extra q~ damping 
factor. 

We have found that, in QED, the pinching singularities appearing in the 
single self-energy insertion approximation to the electron and the photon 
propagators are absent under very reasonable conditions: the distribution 
function should be finite, exceptionally the photon distribution is allowed to 
diverge as k [  1 as ko ~ 0; the derivative of the electron distribution should 
be finite; the total density of electrons should be finite. 

For QCD, identical conditions are imposed on the distribution of massive 
quarks and the distribution of gluons; the distributions of massless quarks 
and ghosts (observe here that in the covariant gauge, the ghost distribution 
is not required to be identically zero) should be integrable functions; they are 
limited by the finiteness of the total density. 

In the preceding sections we have shown that all pinchlike expressions ap- 
pearing in QED and QCD (with massless and massive quarks!) at the single 
self-energy insertion level do transform into well-defined expressions. Many 
other theories behave in such a way. However, there are important excep- 
tions: all theories in which lowest-order processes are kinematically allowed 
do not acquire well-defined expressions at this level. These are electroweak 
interactions, processes involving Higgs and two light particles, a p meson and 
two ~r mesons, Z, W, and other heavy particles decaying into a pair of light 
particles, etc. The second important exception is massless g2~a theory. This 
theory, in contrast to massless QCD, contains no spin factors to provide (5). 
In these cases, one has to resort to the resumed Schwinger-Dyson series. 

Indeed in the resummed Schwinger-Dyson series all the problems are 
solved. 

But the case in which pinch singularity is not eliminated in the single 
self-energy insertion approximation [16] shows a peculiar properties in also 
in the resummed Schwinger-Dyson series: at threshold, Keldish component 
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is enhanced near the threshold and dominates over the other low order con- 
tributions! 

The main result of the present paper is the cancellation of pinching singu- 
larities at the single self-energy insertion level in QED- and QCD-like theories. 
This, together with the reported [12,13] cancellation of collinear singularities, 
allows the extraction of useful physical information contained in the imag- 
inary parts of the two-loop diagrams. This is not the case with three-loop 
diagrams, because some of them contain double self-energy insertions. In this 
case, one again has to resort to the sophistication of resumed propagators. 

A p p e n d i x  

We start [1] by defining a heat-bath four-velocity Uu, normalized to unity, 
and define the orthogonal projector 

A,~, = g~, - UuU~,. (136) 

We further define spacelike vectors in the heat-bath ~ame: 

= A  u = ~2 _ q 2 .  m~ ~ u q  , m~m ~ = (137) 

There are four independent symmetric tensors (we distinguish retarded 
from advanced tensors by the usual modification of the ie prescription) A, B, 
and D (which are mutually orthogonal projectors), and C: 

A~,v(q) = A~,, ~m~, (138) 
m 2 , 

m~m~, q~qv (139) BR ~,,(q) = U~,Uv + m---. Y-  - (q2 + 2iqoe) ' 

CR . . (q)  -- (-m2)'/2 / (U'q)2 m~m. q2o + q2 q.q~, 
U.q ~ - -~ -T -U~Uv-  m-----T-+ q-----T---q2-~-(~qoe], (140) 

q~q~" (141) DR ~. (q) -- q2 + 2iqoe" 

In addition to the known multiplication [1,26] properties 

A(q)A(q) = A(q), BR.A (q)BR.A (q) = BR,A (q), (142) 

CR,A (q)CR,A (q) = -(BR,A(q) + DR,A(q)), D~,A(q)DR,A (q) = DR,A (q), 
(143) 
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A(q)B(q) : B(q)A(q) = 0, A(q)C(q) = C(q)A(q) : O, 

A(q)D(q) = D(q)A(q) = O, B(q)D(q) : D(q)B(q) = O, (144) 

4~q~ (145) (BR,a (q)CR,A (q))u; = (CR,.4 (q)DR,A (q))uv = q2 ± 2iqoe' 

qt,4v (146) (CR,A(q)SR,a(q))uv = (DR,A(q)CR,A(q))u,. q2 ± 2iqoe' 

we need mixed products 

BR,A (q)BA,R (q) :- 1 (BR (q) + Ba (q)), (147) 

CR,A (q)CA,R(q) = - - I  (BR(q) + BA(q) + DR(q) + DA(q)), (148) 

DR,.4 (q)DA,a (q) = 1 (DR (q) + DA (q)), (149) 

(BR,A (q)CA,R (q))m" = (CR,A (q)DA,R(q))uv 
1 4 , , q .  . 

- + (15o) 
+ 2iqoe q2 _ 2iqoe), 

(CR,A (q)BA,R (q))t~' = (DR,A (q)CA,R (q)).v 

_ 1(q2 q.4~ q.t~ ). (151) 
2 + 2iqoe + q2 _ 2iqoe 

By calculating the traces of the tensors lap ", qUl~" + lUq ", and qUq" with 
projectors,  we find 

q2 q' ( iq°AuV(q)-12oBm'(q)) +OUV(kT), (152) l U F = m 2 2 - ~ A U ~ ' ( q ) + ~  412 2 

¢~z 

qUlU + lt'q ~ = --~-, CUU(q) + OUV(kT), (153) 
Iql 

q~,qV = q2D~V(q), (154) 

g.U = (AtW(q) + BU,,(q) + BUY(q)). (155) 

The tensor O ~ (kT) is linear in k, and vanishes after integration over ¢. One 
should observe that  (152) to (155) are valid for an arbitrary (but the same 
for B and D) R / A  prescription, so we do not indicate it. 

Using the multiplication rules one obtains 

(gap - (1 - a)DRu.(q)) 

(faA pa + fbB pa + fcC pa + fdDPa(gav - (1 - a)Da~,v(q)) 
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= 1 (  faA~a + fbB~a - ( 1 - a ) f c C ~ a  + ( 1 - a ) 2  f d D ~  

+ h B ~  ~ a)fcC~ ° ÷ - . 

It  is important  to observe that ,  owing to the properties of the mixed products  
(147) to (151), the R / A  assignment of F does not influence the final result! 
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A b s t r a c t .  Relativistic heavy ion collisions are studied taking the exact conserva- 
tion of baryon number, strangeness and charge explicitly into account. 

1 I n t r o d u c t i o n  

In high energy particle collisions, the interaction volume is often very small 
and large deviations can occur from the thermodynamic limit depending on 
the beam energy. In some cases it may be easy to produce a pion since one 
needs only 140 MeV for its rest mass, however, to produce an anti-proton one 
needs at least twice the rest mass, 1.88 GeV and not simply 0.94 GeV, since 
they can only be produced in pairs. The probability to produce anti-protons 
therefore cannot simply follow the same law (e.g. a Boltzmann distribution) 
as the production of pions. Fortunately, statistical mechanics provides us with 
the tools to take into account constraints like baryon number or strangeness 
conservation. This will be presented in these lecture notes. 

Basically, if the system is large and hot, the corrections axe negligible. 
In P b  - P b  collisions at the CERN/SPS collider they are negligible because 
the system is large enough but for p - p collisions at the same energy these 
corrections are large and must be taken into account because the final system 
is too small. 

The main statistical concepts are presented in section 2. In chapter 3, a 
statistical method for taking the exact strangeness conservation into account 
is presented. This is applied in section 3.1 to describe the particle production 
as observed at the GSI in Ni+Ni collisions. The exact treatment of quantum 
numbers is extended to include the strangeness, baryon number and charge 
in section 4. A comparison of numerical results with the AGS E802 data is 
given in section 4.1. Finally in section 5, the generalization of the method to 
arbitrary internal symmetry is reviewed. 
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2 Quantum Statistical Concepts in Brief 

Throughout this paper we follow the usual convention of natural units, so the 
speed of light, Planck constant and Boltzmann constant have values c - 1, 
h _= 1 and k ~ 1, respectively. 

All the physical information about a collection of particles is contained in a 
density operator, ~. The average of an observable A in this statistical ensemble 
is calculated as (A) = tr(~.4), were .4 is a Hermitian operator corresponding 
to the observable. Using the density operator, one defines the entropy of the 
system considered as S = - tr(~ln~).  In any system in nature, the entropy 
is known to tend to its maximum, so one has to find a representation of the 
density operator satisfying this condition. In thermodynamical equilibrium, 
the average occupations of different quantum states do not change in time, 
so O~/Ot = O. The density operator satisfies the equation of motion of the 
form iO~/Ot = -~ , /~ ] ,  where/~ is the Hamiltonian of the system. Thus, the 
thermodynamical, stationary density operator is diagonal in the basis formed 
by Hamiltonian eigenstates. 

The choice of constraints used in maximizing the entropy defines the type 
of the statistical ensemble obtained. The closed system with fixed energy, 
E, volume, V, and number of particles i, Ni, is a microcanonical ensemble. 
System in heat bath (the ensemble average of energy (E) = tr(~/?/), V and 
Ni are conserved) corresponds to canonical ensemble. Further, if we let the 
particle number Ni fluctuate such that the average tr(~/Vi) is conserved, we 
obtain a grand canonical ensemble. 

Maximization of entropy using the canonical boundary conditions leads 
to the density operator of the form ~ = e-~H/Z,  where t3 is the inverse of 
temperature T, and Z is the canonical partition function, 

Z = tr e - ~  = Z e-~E'(N)" (1) 
i 

Here i labels the different quantum states in the system and Ei(N)  is the 
eigenvalue of the N particle Hamiltonian. In the last step the trace is ex- 
pressed in the basis of Hamiltonian eigenstates. Once knowing the correct 
partition function, one is able to calculate the thermodynamical quantities 
describing the system. For example, the average energy is (E) = T20 In Z/OT. 

Choosing the grand canonical boundary conditions yields 

~a = e-~(~-~'~') /ZG. 

Here we have employed the grand canonical partition function, 

Z G ( T , ( A i } , V ) = t r e  -z(~-u'f~') = H Z A~'ZN,, (2) 
i Ni 

where Ai = e zui is the fugacity of the particle species i and ZN~ is the N 
particle canonical partition function of the species i. Chemical potentials #i 
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take care of particle number conservation in an average sense. In this work, 
we are mainly interested in the mean particle numbers in the grand canonical 
system, so we employ frequently the equation 

O ln Zc 
(Yi) = ) ~ i -  (3) 

In properly quantized, finite volume system the part i t ion function is often 
rather  difficult to  compute. In this work we never know the exact geometry 
of the system, so we settle for a finite volume, V, sample of the infinite vol- 
ume system. Thus, the summation over discrete quantum states in part i t ion 
function is changed to simple phase space integration over continuum. The  
one particle canonical parti t ion function of particle i is now given by 

V d p p 2 e _ / 3 ~ ,  (4) 

where gi is the spin degeneration factor, and mi is the mass of the particle 
i. Using the previous result and taking care of the correct occupation of 
quantum states, the grand canonical parti t ion function can be writ ten in the 
form 

$ 

where y is the statistics factor: ~i = 1 for fermions and 0i = - 1  for bosons. 
Now we can write the mean particle number as 

In a rare gas (i.e. Boltzmann) limit, which is mostly applied here, we just  put  
the statistics factors Yi = 0 in particle numbers formula, or let the possible 
occupation of one particle states be only one to obtain 

lnZ  = Z (7) 
i 

In the relativistic, multispecies gas, where the conservation of number of 
distinct particles is not the main interest, we associate the chemical potentials 
to conserved quantum numbers. Given that  baryon number B, strangeness 
S and electric charge Q are conserved averagely in a relativistic hadron gas, 
the particle numbers (6) are 

Y oo - 1  

( N i ) = g i ~  f d p p ' [ ( A B ' A ~ ' A ~ ' ) - ' e " ~ + O i ]  , (8) 
"~" Jo 

where Bi, Si and Qi are the quantum numbers of individual particle species. 
The average net quantum number, say baryon number, is a sum over particle 
numbers weighted by the chosen quantum number, 

(N.) = Z Bi(Ni). (9) 
i 
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3 Exact Strangeness C o n s e r v a t i o n  

Let us consider first a gas composed of neutral kaons and antikaons and 
request that the overall strangeness be zero. The canonical (with respect to 
strangeness) partition function is given by 

,=0 : ) ' ° : '  

where ei is the energy and ni the number of K °'s in the state denoted by i. 
The Kronecker delta ensures that the overall strangeness is zero: nKo -- n-go = 
~-]~i°°_-o(ni -- ~i) = 0. By including the 1~hi! and 1/~i! one gets the sums 
over all distinct states. Replacing the sums over single particle levels by the 
Boltzmannian momentum integrals and using the Dirac representation 

1 f2~r 
~(~ - m) = ~ Jo dae~¢"-~)~ (11) 

of delta function, one obtains the following result 

1 / 2~ [2___~./= - " ] Zs=o = ~ daexp dpp2e ~Ko+,~ 

] x exp ~ d p p 2 e - ~ - i ~ ,  , (12) 

where eKo = ~ / ~  + m R. Applying the notation of single particle partition 
function (4) gives 

1 f2'~daexp(Z~<oe,,~ + 1 - i ~  Zs=o = ~ Jo Z~oc ) .  (13) 

By expanding the exponentials in power series it is easy to perform the a 
-integration to obtain 

O O  

Zs=o = E c~-'~(ZK°)P(Z-~ )," (14) 
p=o (P') 

This series converges to a modified Bessel function 

Z s = o  = Io(2~~),  
which is generally defined by 

oo 1 1 ( x ~  2,+~ 

1~(x) = ~_, Z! (l + .)! ',-2: " 
/=0 

(15) 

(16) 
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The generalization of the calculation to a gas containing any particles i 
carrying strangeness Si = 0, ~=1 is straightforward. For this case one obtains 

1 / 2 ~  
Zs=o = ~ daexp(Afle ic~ -~- J~_l e- ia  "~t- J~fo) , (17) 

where Af, stands for the sum of single particle partition functions of particles 
having strangeness Si = x: 

{~fi 1 Z K  + + Z k  0 + . . .  1 1 1 = + z 4  + z'_+ + z ~  + . . .  
A ~ 2," 

J~f - - I  1 1 = + Z A + Z~+ + Z•o + . . .  (18) Z x _ + Z ~ + . . .  l t l 

J~fO Z 1 ± ~ 1  ..t_ ~ 1  1 1 1 = + z . + . . . + z ~ + z ~ + .  If ~- 7 -  r-#Tf o T I-all-- • • 

In this case, where the strangeness is being treated canonically and the baryon 
number and electric charge grand canonically, the Boltzmannian one species 
partition function is 

V oo 
Z~ = A~'AQQ'gi~ / d p p ' e ~ .  (19 / 

Performing the power expansion of the exponentials and the integration in 
eq. (17) we are left with 

~ 1 )p 
Zs=o = Zo 7.~(X~x_,  = Z o I o ( 2 ~ ) ,  (20) 

p=O 

where Z0 is the grand canonical partition function for particles having strangeness 
zero. To calculate the average abundances of particles, we substitute the fic- 
titious strangeness fugacity and derive 

(Ni) = )~i Olnzs=° (21) 
OAi ~$=1 

which gives 

(AT/) = Z~ Is, ( 2 ~ )  (22) 
~ o ( 2 ~ )  

Each term in the sum of eq. (20) is the product of a strangeness plus one 
and a strangeness minus one particle and one sees the exact strangeness 
conservation explicitly at work. Due to the strict conservation, the number 
of strange particles increases nonlinearly with volume, which is illustrated in 
Fig. (1). The method used above and the expression of the partition function 
Zs=o indicate that to impose the strict strangeness conservation, one projects 
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Fig. 1: Nonlinear volume dependence of strange particle abundances in canonical 
treatment (see eq. 22) compared to grand canonical case (X -- 1). 

the grand canonical partition function Za(T, AB, AQ, As) onto the state with 
strangeness S, 

I /2= 
Zs : ~ dae-iS~Za(T, AB, AQ, As), (23) 

where the fugacity factor As has been replaced by 

AS = e i~. (24) 

The partition function for a gas containing particles with strangeness 
Si = 0, -t-1, -t-2 is given by 

Z0 f2~ ZS = 2-~ Jo d~e-iS~ exP[jV'xei~ + A/'-le-'~ (25) 

Ar tA )~-l e-i2~ -t- ABl ~Qei2C~)] q-.~2.~()~Be -i2a q-AB l e i2a)  Jr" JvF.-k  B Q 

where the sums A/so and A/'~- include also the heavier resonances carrying 
the same quantum numbers, as the A/'+x do. Using the generating function 
for modified Bessel functions Iv defined by 

{(. 1) )  = 
exp 5 t +  = Z I~(p)t~ (26) 

V ~  - - O O  

and expanding again the exponentials in power series we obtain 

Zofo2"dae-iSa ~ m--i2ma Im(2A/zO)ABe (27) Z s  = 
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00 1 o o ~  
× I,(2.,V'--1,~,~,~"~-'~"~' ~ -~.,v'~ ~p" ~ .,V'!xe-'~ ~. 

n=-oo "" ~ p! q=O 

Carrying out the integration and rearranging the summations the result can 
be expressed in terms of Iv -functions: 

71 - - n  Zs=Zo ~ I,,(2.,V'~o),X~ ~ x.C2~Z~-)~B~ 
~r/,~--- - -  OO n ~ - - O O  

oo 1 1 

x ~ p !  ( - s + p  - 2m - 2n)! 
p = 0  

o¢ ,  O o  

/ .  n - - n  =Zo ~ i.,(~o1:~ ~ .(2z~_)~.:~ o 
lrrt ~ - -  O0 n ~ .  - -  O0 

( ~  S + 2 r n + 2 n  

x Is+2m+,.  ( 2 ~ ) -  (28) 

Using the same techniques the result can be generalized to the case, where 
t h e / ?  -like hadrons (Si = 4-3) are included as well: 

Zs =Zo ~ im(2.'~o)z~ ~ / . . ( z ~ ' ~ _ ) . ~ % -  
?'D, ~ - -  ¢:)O n ~- - -  O0 

CO 

× ~,V-ZS-,) i~+~+~.+~,(2,/mm;_,). (29) 

The mean number of hadrons i with strangeness Si in the system becomes 

( 
<N,) : z~ ~ \V roT_,) • 

The modified Bessel functions decrease quickly with increasing absolute value 
of their indecies, so the numerical evaluation of mean particle numbers is not 
cumbersome. 

3.1 A p p l i c a t i o n  o f  Zs 

In a recent paper [1] we have analysed the particle production in GSI SIS 
Ni+Ni experiments. We addressed especially the abundance of kaons who 
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can not be described by hadronic gas model in its s tandard  form. Although 
the size of the Ni system is relatively large the corrections due to exact  
s trangeness conservation turned out to  be crucial at  low tempera tures ,  T < 
100 MeV, involved. At these tempera tures  the width of resonances had to be 
taken  into account. A summary  of our results for particle rat ios is presented 
in table  1. 

Table 1: Particle ratios given by present model compared to experimental results. 
The best fit value, p s  = 0.72 GeV, for the baryon chemical potential is used. 

Ratio 

K + / K  - 
K+/~ + 
¢ / K -  
7 r + / T r  - 
~/~o 
~r+/p 
~r°/B 
d/p 

Model 
R =  4.2 fm R=3fm 
T---- 65 MeV 75 MeV T = 65 MeV 75 MeV 
25.7 22.4 23.9 21.1 
0.0071 0.0339 0,0027 0.0132 
10.103 0.082 0.276 0.212 
0.893 0.895 0.894 0.898 
0.008 0.015 0.008 0.015 
0.225 0.247 0.224 0.246 
0.104 0.108 0.104 0.107 
0.129 0.188 0.129 0.188 

Data 

ratio ref. 
21 4- 9 [2-41 
0.0074 4- 0.0021 [3,6,9] 
o.1 [7] 
0.89 [8] 
0.037 4- 0.002 [5] 
0.195 4- 0.020 [9,8] 
0.125 + 0.007 [5] 
0.26 [9] 

The measured ha(ironic ratios with corresponding errorbars  are described 
as bands in the (T, #B) plane as shown in Fig. 1. The  intervals of t empe ra tu r e  
and of chemical potential  

T = 70 + 10MeV 

#B ---- 720 =t= 30MeV 

give a good fit to the data .  The freeze-out radius of R -~ 4 fm was ext racted 
from the volume dependence of the ratios K+/~r + and C/K-. 

4 E x a c t  B a r y o n ,  C h a r g e  and S t r a n g e n e s s  C o n s e r v a t i o n  

In the case of three exactly conserved, additive quantum numbers  we s tar t  
f rom the single particle part i t ion function of particle i, 

V oo 
Zi = Zgi~-~2 ~o dpp2e-~eJSnJ'B'~Qi'Q'SS~'s'" (31) 

J 

Making use of the integral representation for 5 -functions and the overall 
conservation constraints 

EBi=B,  ZQi=Q,  E s i = s ,  (32) 



Quantum Numbers 243 

0 .12  

0.1 

0 .08  

0.06 

0 .04  ) 

I I I 

K÷/K" 21:1:9 - -  
K+/K 21 ........ 

K+/~  + 0 .0074-+0.0021 . . . . . . .  
O,'K 0.1 ................ 

~+/p 0 . 1 9 5 + 0 . 0 2 0  . . . . . . . .  

/" , ,  

f ." 
i ,,'+ 

I/ .~.~?:.~.: . . .~. .  . . . . . . . . . .  R -- 4 2 f m  
i " < : . :  . . . . . . . . .  " 

' i "'\ ~/2Q = 1.04 

,.,.,., 

! 

0.7 
0 .02  ~ I I 

0 .6  0 .8  0 .9  1 1.1 
~B [GeV]  

Fig. 2: Curves in the ( p B ,  T) plane corresponding to the hvxtronic ratios indicated. 
The interaction volume corresponds to the radius of 4.2 fro, and the isospin asym- 
metry is B/2Q = 1.04. 

the resulting integral corresponds to a projection of the grand canonical par- 
t i t ion function onto the desired values of B, Q and S: 

l f2~d~be-iBCfo2"rd~e-iQ~fo2"Cdae-iS~ z~,o,~ = ~ Jo 

x ZG(T, AB, AO, As). (33) 

Here the fugacity factors have been replaced by 

AB = e i~, AQ = e i~, AS = e i~. (34) 

As the contributions always come pairwise for particles and antiparticles, the 
fugacity factors will give rise to the cosine of the corresponding angle. It is 
useful to group the particles according to their quantum numbers. Leaving 
out charm, bottom and Si _> 2 particles we are left with ten categories which 
will be labeled by their particle content. For instance, A/'Ko stands for the 
sum of one particle partition functions of neutral strange and antistrange 
mesons (K °, ~-o, K ,0 ,  ~-;o, . . . ) ,  AfN~ stands for charged strange mesons 
(K +, K - ,  K *+, K * -  . . . .  ), and J~a stands for all neutral hyperons and 
antihyperons. With these notations the partition function can be rewritten 
in the form 

l f2~dCe-iBCfo2~dCe-iQCfo2~dae-iS~ (35) zB,,~,s = ~ Jo 
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x exp{2JV'n cos d 2 + 2.Af, ro cos ~b + 2.ARK0 cos a + 2.AfK~ cos(~b + oL) 

+2Arp cos(¢ + ~) + 2A;~- cos(~ - ~) + 2J~++ cos(~ + 2¢) 
+2Aza cos(¢ - a) 
+ 2 N z +  cos(¢ + ~b - a)  + 2N'E- cos(¢ - ¢ - a ) } .  

The integration above can not be done directly due to cosine terms of mul- 
tiple angles. To circumvent this difficulty, we introduce a new angle whenever 
more than one appears. For example, in the term involving Alp we introduce 
an intermediate angle ~ in the following way 

~o 2'~ ~ 1 9~o'rd,eiV(¢+¢_,). (36) 1 = d~6(¢ + ¢ - ~) = 
V - - - ~  - -  C O  

The application of the integral representation of the modified Bessel function, 

1 ~0 ~ dw e ~ cos ~ (37) In (z) = ~ cos nw, 

allows one to write the parti t ion function in the form 

kv----1 n ~ = - o o ]  

x I_s+,,~+,,~+,,~+,.0+.~+,,. (2.~,,) 
x I-Q+.I+,,2-,,~+..-,~6+2,,, (2Az,~o) (38) 

x l-s+n~-n4-nb-,~o (2XKo) 

x I m (2XKo)In2 (2Alp)In3 (2NA-)  

x In4 (2NA)In5 (2iV'E+)In6 ( 2 N v - ) I n ,  (2Afa++). 

The differentiation of eq. (33) for particle abundances yields the result 

(gi) = ZB-B,,Q-Q,,S-S, Z1" (39) 
ZB,Q,S 

The evaluation of the canonical parti t ion function with three simultane- 
ously conserved quantum numbers becomes numerically very t ime consuming 
for large values of B. So far, for systems with B > 20 we have been forced to 
resort to the grand canonical t reatment.  

4.1 Applicat ion o f  ZB,Q,s 

In order to compare our numerical results with the E802 experimental  da ta  
shown in Table 2, we estimate the baryon number and charge of the exper- 
imental system via geometrical considerations. Letting Rp and RT be the 
ra~iius of a projectile and target  nucleus respectively, we assume tha t  the 
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radii are directly proportional to the cubic roots of the mass numbers Ap 
and AT of the interacting nuclei. In the case of central collisions the interac- 
tion region is taken to be a cylinder of radius Rp, length 2x/R ~ - R~ plus, 
two remaining spherical segments at the ends of the cylinder with RT as 
the radius. We find the total number of participating nucleons (or, baryon 
number, B) and the total charge Q to be 

B = Ap + AT 1 -  1 -  ~,"~T ] ] (40) 

----- - - ( 4 1 )  

respectively. 
The comparison of our numerical results with the E802 data (Table 2) 

of the K+/Tr + and K-/Tr- ratios as functions of the size of the system or, 
equivalently, B are shown in Fig. 3. In the upper figure we observe that  the 
theoretical curve for B/2Q -- 5/6 approximates the K+/~r + data best. The 
theoretical curves lie systematically above the data but drop closer as B/2Q 
decreases towards the collision value. The effect of the isospin asymmetry of 
the system is seen also in the K - / l r -  data comparison. As the ratio B/2Q 
approaches the collision value the theoretical curves begin to approximate 
the data more closely. 

Table 2: Experimental results reported by the E802 collaboration. B and Q axe 
calculated using equations 40 and 41. 

Collision 
p + 4Be 9 
p + 13A127 
p + 29Cuo4 
p -{- 79Au197 
'4Si2s + 79Au~97 

K+ln + Ref. K-in- :Ref .  B Q 
7.8-4-0.4% 11,12] 2.0-4-0.2% [11] 3.9 2.3 
9.9-4-0.5% [12] 5.4 3.1 
10.8+0.6% [12] 6.9 3.7 
12.5-4-0.6% [11,12] 2.8=t:0.3% [11] 9.7 4.5 
18.2:1:0.9% [11] 3.2:1:0.3% [ii] 102.7 44.0 
19.2:1:3% [13] 3.6~0.8% [13] 

5 Generalization of  the Project ion Method 

In this section, we review the projection method generalized to arbitrary 
internal symmetry of the system in addition to U(1) of strangeness and U(1) x 
U(1) × U(1) of baryon number, electric charge and strangeness. For complete 



246 E. Suhonen et al. 

0.22 

0.2 

0.18 

0.16 

0.14 

~-.  0.12 

~:~ 0.1 

0.08 

0.06 

0.04 

~ 2 Q  = 1 - -  
" Canonical, B(2Q = 514 

/ /  Canonical, B / 2 Q  = 5/6 
- - / ~  TD limit, B/2O : 1 
• TD limit, B / 2 Q  : S/4 

Experiments 

i'o 1'5 2'o 
B 

0.04{ , , , ' I 
0.035 L T = 100 MeV, B / V  = 0.04 fln -s I " 

[ 1 
.~ 0.03 . . . . . . . . . . . .  T" . . . .  ~ . . . . . . . . .  / ' 
~ . ° . . , , , , , , , , . .  . . . . . . . . .  

J 0.025 

' r : ,  - 
o.o  . . . .  

~/'" c ~ o . i ~ ,  ~12¢, = s/6 - -  

0.015 J TD limit, B / 2 Q  = 1 - - 
/ /  TD limit, B / 2 Q  : 5/4 - - 

Experiments 
o.o1 ~ 1'o 1~ 2~ 

B 

Fig. 3: Thermal model  expectations for the production ratios K+/~r + and K - / ~ -  
at a temperature of 100 MeV and a baryon density of  0.04 fm -3  compared to 
experimental results from the Brookhaven AGS. The experimental ratios from S i -  
Au collisions (B  ~ 103) is moved to B = 21 for the sake of  convenience. 

derivation, see the original texts of Turko, Redlich and Hagedorn [14]. The 
general method is suitable for non-abelian symmetries, such as SU(2) of 
isospin [15] or angular momentum [16], and SU(3) of color [17] as well. 

If the system is exactly symmetric under the operations of internal sym- 
metry group G, the corresponding group generators Qk have the same eigen- 
states as the Hamiltonian. Thus 

[/~,Q~] = 0, k = 1 , . . . , n ,  (42) 

where n is the number of parameters in the group. Let us define the generating 
function 2 as 2 = tr[U(g)e-~h], where U(g) is an unitary representation of 
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the group. With the aid of irreducible presentations of U, this decomposes to 

2~ (g) Z (43) 

Here we used a character ~:~(g) and the dimension d(v) of an irreducible 
presentation U~(g), and the corresponding canonical partition function Z~. 
Using the orthogonality of characters, 

/ d#(g)~--b-~:~ ~' (g) = 6~,, (44) 

we may compute the canonical partition function once we know the generat- 
ing function: 

Z~ = d(v) / d / ~ ( g ) ~ 2 .  

Further investigation of the generating function reveals that 

2 = t r e x p  - + i  QkTk 
\ k= l  

= H H ~ e x p  n -~E j  +i  q(P)Tk • 
j = l  p=l  k=l  

(45) 

(46) 

In the last step, we have expressed the trace in the basis of n -particle Hamil- 
tonian eigenstates. The q(P) are the conserved charges, and the "Yk are the 
variables of the Cartan subgroup of the group G of rank r. Eq. (46) resem- 
bles the grand canonical partition function, and is actually obtained from it 
by the Wick rotation: ~Pi --~ -iTi. 

As an example, let us choose the internal symmetry of the system corre- 
spond to U(1)q 1 × -.- x U(1)q., where the qi are the conserved charges. The 
character of U(1)q~ is e iq~', so the character of the direct product group is 
exp(i ~-']~ir=l qiTi). The canonical partition function respecting the exact con- 
servation of charges qi has now the form 

Zq, ..... q. (T ,  V )  - /0 (27r)r d71 "'" d% 

(47) 

The special cases, Zs and ZB,Q,s for a Boltzmannian hadron resonance gas 
are considered in previous sections. 
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6 Summary 

The particle abundances have been computed in the canonical formalism us- 
ing the formulation for the exact conservation of baryon number ,  s t rangeness 
and charge in the thermal  model of particle production. A good agreement  
with the experimental  da ta  of GSI Ni+Ni  collisions and of E802 col laborat ion 
in p - A collisions was reported. 

The  good agreement with chemical equilibrium does not mean  tha t  the 
particle spect ra  should follow exactly a Bol tzmann distr ibution since the 
m o m e n t a  of particles can be severely affected by flow. As an example,  a 
model with Bjorken expansion in the longitudinal direction will still have its 
particle ratios determined by Bol tzmann factors even though the longitudinal 
distr ibution is nowhere near a Bol tzmann distribution [18]. 
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